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Résumé :
Le mouvement de paroi de domaine est typiquement induit par des champs magnétiques externes ou des
courants polarisés en spin. Cependant, des préoccupations concernant la consommation d’énergie de
ces systèmes motive la recherche d’alternatives. Il en résulte un intérêt grandissant pour les différents
couplages permettant d’utiliser des champs électriques plutôt que des courants pour déclencher le mou-
vement de paroi de domaine. Parmi les solutions potentielles, les matériaux magnétoélectriques passant
par les contraintes mécaniques paraissent prometteurs. Dans ce contexte, la brisure de symétrie entre
les états stables d’un nanoaimant autorise une implémentation plus simple du couplage mécanique.
Ceci peut être obtenu grâce à un champ magnétique transverse. Dans un système à deux domaines, la
contrainte provoque l’agrandissement de l’un par rapport à l’autre, ce qui cause le mouvement de la
paroi de domaine. Ici, nous proposons une description des caractéristiques particulières du mouvement
de paroi de domaine induit par contrainte mécanique. Dans nos simulations basées sur une procédure
numérique ad-hoc, un nanoruban magnétoélastique présentant deux domaines est couplé à un substrat
piézoélectrique PMN-PT de coupe <011>. Le design du profil de section du nanoruban permet de fa-
çonner la réponse statique et dynamique dans une certaine mesure. Du point de vue de la dynamique,
le mouvement induit par les contraintes se distingue des régimes connus de mouvement du fait que la
forme de paroi de domaine présente une excursion notable de l’aimanation hors du plan. Alors qu’on
obtient des vitesses comparables à celles des autres techniques, cette approche est bien plus efficace en
termes de consommation d’énergie.

Abstract :

The motion of domain walls is typically induced by external magnetic fields or spin-polarized currents.
However, concerns about energy consumption of these systems motivates the search for alternatives.
Thus, there is a growing interest in the different coupling allowing the use of electric fields instead of
currents to trigger domain wall motion. Among these potential solutions, magnetoelectric materials me-
diated by mechanical stress appear promising. Since a uniform stress alone cannot induce unidirectional
domain wall motion, the symmetry breaking of the stable states of a nanomagnet allows for a simpler
implementation of the mechanical coupling. This can be achieved by a transverse magnetic field. In a
two-domain system, the stress will then provoke the expansion of one of them at the expense of the other,
which causes domain wall motion. Here, we propose a description of the peculiar characteristics of
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domain wall motion induced by mechanical stress. In our simulations based on an ad-hoc procedure,
a magnetoelastic nanostripe comprising two domains is coupled to a <011> cut PMN-PT piezoelec-
tric substrate. The cross section design of the nanostripe allows the tailoring of the static and dynamic
response to a certain extent. From a dynamical point of view, the motion induced by the stress differs
from known motion regimes because the shape of the domain wall exhibits a remarkable out-of-plane
excursion of the magnetization. While we get velocities comparable to those of other techniques, this
approach is much more efficient in terms of energy consumption.

Mots clefs : stress-mediated coupling, magnetoelectric effect, magnetoelastic
and piezoelectric materials, magnetic domain walls

1 Introduction
In macroscopic ferromagnetic materials, the magnetization is often not uniform, with the distribution
such that the overall magnetization is zero. Regions of uniform magnetization are separated by localized
structures called domain walls (DWs) within which the magnetization is strongly variable. Their mani-
pulation is currently a subject of strong interest - especially in confined geometries such as nanowires,
nanostripes and thin films - for both the search of fundamental insights and applications. The latters
include for instance the storage [1, 2, 3, 4] and processing [5, 6, 7, 8] of information. DWmotion is typi-
cally induced by external magnetic fields [9, 10, 11, 12] or spin-polarized currents[13, 14, 15, 16, 17, 18].
However, in order to reduce energy consumption in these systems, there is a considerable interest in the
use of electric fields, instead of electric currents. One way of implementing this magnetoelectric cou-
pling is to use mechanical stress as an intermediate, for example by coupling a piezoelectric substrate
with a magnetoelastic material. However, a uniform stress does not directly induce a unidirectional DW
motion in head-to-head (180◦) structures. For this reason, the mechanical coupling has been proposed
in complex heterostructures of rather convoluted realization and operation. For instance, a localized
non-uniform mechanical stress has been exploited to move a DW in a nanowire sandwiched between
a substrate and a multi-contacted piezoelectric layer [19, 20]. A recent application of this principle
has been exploited to produce the rotation of a DW in a ferromagnetic ring fabricated on a piezoelec-
tric substrate [21, 22]. Also, the dynamics of a current- or field-induced DW can be piezoelectrically
controlled through a strain-mediated magnetic anisotropy [24, 23, 25, 26]. Moreover, the magnetic DW
motion can be caused by pinning onto moving ferroelectric DWs [27, 28]. The strain-mediated elec-
tric control of domain structures can be obtained for domain wall between orthogonal states (90◦) in
cubic ferromagnets without using an external magnetic field [29]. A promising alternative is based on
the symmetry breaking of the two opposite stable magnetization states arising from the uniaxial ani-
sotropy of unidimensional ferromagnets. Basically, this can be realized through a static magnetic field,
e.g. generated by permanent magnets, which is perpendicularly applied to the ferromagnetic easy axis.
The consequent tilting of the states allows for their manipulation by way of uniform mechanical actions.
This mechanism has been used to mechanically switch the magnetization of magnetoelastic particles
[30, 31, 32, 33, 34, 35, 36, 37, 38] or to induce DW motion with uniform stresses [39, 40, 41]. While
the magneto-electro-elastic coupling in composite systems has been largely studied both experimentally
[42] and theoretically in the linear [43] and nonlinear [44, 45] regimes, the exploitation of the magnetiza-
tion dynamics in multi-layered systems is a recent application with important implications in memories,
spintronics and new paradigms of information processing.
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Figure 1 – (a) Sketch of the system constituted by a magnetoelastic nanostripe deposited on a piezoelec-
tric substrate. The magnetization vector ~M is described by angles Φ and Θ and the nanostripe easy-axis
is along x. A DW is thus created between two states tilted by the magnetic field ~H0. (b) Stress compo-
nents σ > 0 and τ < 0 generated by the electric field ~E0 = E0~ez with E0 > 0 (if E0 < 0, then σ < 0
and τ > 0). (c) DW equilibrium position versus electric field in a nanostripe with parabolic shape.

Here, we investigate the distinctive DW dynamics induced in an amorphous magnetoelastic nanostripe
by the combination of a tilting magnetic field ~H0 and a uniform stress generated by a piezoelectric
substrate (see Fig.1a). The applied stress considered is composed of uniform orthogonal tensile and
compressive components (σ and τ in Fig.1b), and is controlled by an electric field ~E0 via the piezoe-
lectric effect. We provide evidence that the DW velocity is of the same order of magnitude as that of
field- or current-induced motion, while the energy consumption is between one and two orders of ma-
gnitude smaller. Tailoring of the static and dynamic responses is possible through the engineering of the
cross-section. We will discuss the parabolic and constant section profiles, leading to a precise position
and velocity control, respectively. In particular, the parabolic profile yields a reversible behavior with a
one-to-one correspondence between applied stress (or electric field) and DW position (see Fig.1c). It is
worth noticing that contrary to the well-known steady-state Walker DW dynamics, where the magneti-
zation is always contained in a given plane [46], we observe here local out-of-plane excursions of the
magnetization vector during its evolution.

We briefly describe the physical principle exploited in the proposed system. We take into consideration
the magnetoelastic layer placed on the piezoelectric substrate, as represented in Fig.1a. The stripe shows
a uniaxial anisotropy, which tends to align the magnetization along x-axis (without any preference bet-
ween positive and negative directions). We propose to apply a magnetic field along the y-axis. From
the technological point of view, the system can be simply placed in the air gap of a surrounding ma-
gnetic circuit, which includes an arrangement of permanent magnets. Given the lengthscales involved it
is rather certain that the homogeneity of the magnetic field generated by such a device would be secu-
red over the whole nanostripe. In the case of applications for which integration concerns are relevant,
macroscopic magnets may generate more uniform fields in a given region and can be adopted without
limiting the integration density on a given substrate. Therefore, all magnetoelastic nanostripes would
be subjected to the same magnetic bias. Anyway, the competition between the magnetic anisotropy and
the applied magnetic field generates two energetically equivalent stable orientations for the nanostripe
magnetization. We can therefore consider a domain wall between two domains characterized by these
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two magnetization states, as shown by the arrows distribution within the nanostripe in Fig.1a. To in-
duce the domain wall motion, we take advantage of the magnetostriction of the nanostripe, coupled with
the piezoelectric substrate. Indeed, in an arbitrarily strained magnetostrictive layer, the magnetization
tends to be aligned with the direction of the larger geometrical elongation. We can exploit this property
through a varying (positive or negative) electric field applied to the piezoelectric substrate, which gene-
rates tensile and compressive stress components, as shown in Fig.1b. Consequently, it is not difficult to
recognize that a positive electric field leads to a leftward motion of the domain wall, whereas a negative
electric field leads to its rightward motion. This is the principle of operation of the proposed system, and
it can be exploited with different profiles of the ferromagnetic nanostripe for obtaining specific dynamic
behaviors.

The paper is structured as follows. In Section 2 we describe the model adopted to analyse the dynamics of
the system. In Section 3 we present the results based on the numerical solution of the equations obtained
in Section 2. Finally, in Section 4 we discuss the conclusions and some perspectives.

2 The model
We consider the systam described in Fig.1 and, to model its dynamics, we assume that the magnetization
~M depends only on x and t. This hypothesis is reasonable if the thickness and width of the nanomagnet
are small compared to its length.We remark that this assumption has been largely used in the past to study
the motion of a domain wall induced by an external magnetic field, yielding results in good agreement
with experiments [46]. Therefore, we can write ~M = Ms~γ, whereMs is the magnetization at saturation
and ~γ = (cos Φ sin Θ, sin Φ sin Θ, cos Θ) is a unit vector with Φ = Φ(x, t) and Θ = Θ(x, t) (see
Fig.1a). The total energy density

u = uan + uZe + ude + uex + ume (1)

within the nanostripe is composed of the following terms. The uniaxial anisotropy along x is given by

uan = −Kuγ
2
x, (2)

whereKu represents the anisotropy coefficient. On the other hand, the Zeeman contribution corresponds
to

uZe = −µ0MSH0γy, (3)

where µ0 is the permeability of free space and H0 is the intensity of the magnetic field applied along
the y-axis. Similarly, the demagnetization energy density is given by

ude = −1

2
µ0Ms

~Hd · ~γ, (4)

in which ~Hd is the demagnetization field defined as

~Hd(~r) = MS

∫
Ω
N̂ (~r, ~r0)~γ (~r0) d~r0, (5)
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where Ω is the whole magnetoelastic region defined by −L
2 ≤ x ≤ +L

2 , −
`(x)

2 ≤ y ≤ + `(x)
2 , and

−h
2 ≤ z ≤ +h

2 . The quantity N̂ represents the demagnetization tensor [39, 40]

N̂ (~r, ~r0) =
1

4π

[
3 (~r − ~r0)⊗ (~r − ~r0)

‖~r − ~r0‖5
− Î

‖~r − ~r0‖3

]
(6)

where ~a⊗~b represents the tensor product between two vectors ~a and~b, i.e.
(
~a⊗~b

)
ij

= aibj , and Î is
the identity operator. The exchange energy density can be written as

uex = A (d~γ/dx)2 , (7)

where A is the exchange coefficient. The general form of the magnetoelastic energy density is

ume = −Tijεµij , (8)

where Tij is the local Cauchy stress tensor and εµij (~γ) is the magnetostrictive strain. Its mathematical
expression is εµij = λS

2 (3γiγj−δij), where λS is the magnetostriction coefficient. The elastic andmagne-
toelastic properties of the ferromagnetic stripe are assumed to be isotropic (amorphous ferromagnets).
With the geometry of Fig.1, we obtain

ume = −3

4
λS
[
(τ + σ)

(
γ2
x + γ2

y

)
+ 2(τ − σ)γxγy

]
, (9)

where τ and σ are the stress components along ~eτ = (~ex+~ey)/
√

2 and ~eσ = (~ey−~ex)/
√

2, respectively
(~ei is the unit vector along the i-axis). Their values are defined by τ = 2µE0(d31 + νd32)/(1 − ν)

and σ = 2µE0(d32 + νd31)/(1 − ν). Here, µ and ν are the shear modulus and the Poisson ratio of
the magnetoelastic nanostripe and d31 and d32 are the piezoelectric coefficients of the substrate. They
control the strains ετ = d31E0 and εσ = d32E0, along ~eτ and ~eσ respectively, transmitted without loss
to the nanostripe. Although the spatial uniformity of stresses τ and σ and of the magnetic field ~H0 may
not be rigorously fulfilled in real structures because of experimental constraints, we suppose to deal here
with uniform fields in order to shed light on the peculiar physics generated by the coexistence of τ , σ
and ~H0. Presumably, the resulting behavior would be only slightly altered as the model is made more
realistic. For the same reason, the edge roughness, possibly generating potential wells for the DW [47],
is also here neglected. Because the roughness creates barriers with metastable states, the motion can be
hampered and the actual velocity may depart from predictions. Typically, this equates to the emergence
of a creep regime at low fields [47]. However, there is a given thresholds (depinning) for the fields beyond
which the domain wall behavior will approach the usual flow regime predicted theoretically.

To sum up, the total energy density of the system is

u = −Kuγ
2
x − µ0MSH0γy −

1

2
µ0Ms

~Hd · ~γ +A (d~γ/dx)2

−3

4
λS
[
(τ + σ)

(
γ2
x + γ2

y

)
+ 2(τ − σ)γxγy

]
, (10)
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and the total energy U can be finally calculated by integrating Eq.(10) over the ferromagnetic region Ω

U =

∫
Ω
udv

=

∫ +L/2

−L/2
h`(x)

[
−Kuγ

2
x − µ0MSH0γy +A (d~γ/dx)2 − 3

4
λS(τ + σ)

(
γ2
x + γ2

y

)
−3

2
λS(τ − σ)γxγy

]
dx− 1

2
µ0M

2
S

∫
Ω

∫
Ω
~γ (~r) · N̂ (~r, ~r0)~γ (~r0) d~r0d~r,

(11)

where the demagnetization tensor N̂ is defined in Eq.(6). The minimization of the functional U defined
in Eq.(11) can be performed as follows : min

~γ
U ′(~γ), where

U ′(~γ) = U(~γ) +

∫ +L/2

−L/2
λ(x) (~γ · ~γ − 1) dv, (12)

and λ = λ (x) is a Lagrange multiplier introduced to fix the norm of the unit vector ~γ. The application
of the variational calculus to this minimization problem entails the solution of the following equation

d

dα
U ′
[
~γ (x) + α~h (x)

] ∣∣∣∣
α=0

= 0 ∀~h (x) . (13)

The development of this derivative, not reported here for the sake of brevity, yields the static or equili-
brium equation ~γ ∧ ~Heff = 0, where the effective field ~Heff is given by

~Heff = H0~ey +
〈
~Hd

〉
+

2Kuγx~ex
µ0MS

+
2A

µ0MS`

∂

∂x

(
`
∂~γ

∂x

)
+

3
√

2λS
2µ0MS

[(γx + γy)τ~eτ − (γx − γy)σ~eσ] , (14)

and `(x) is the profile of the variable section. Here,
〈
~Hd

〉
represents the average value of ~Hd on the

(y, z) cross-section of the nanostripe

〈 ~Hd〉(x) =
1

h`(x)

+
`(x)
2∫

− `(x)
2

+h
2∫

−h
2

~Hd(~r)dzdy. (15)

The effective field ~Heff can now be inserted into the Landau-Lifshitz-Gilbert (LLG) equation

d~γ

dt
= −µ0G~γ ∧ ~Heff + α~γ ∧ d~γ

dt
, (16)

describing the magnetization dynamics [48, 49]. We eventually obtain its explicit form{
Φ̇ = G(αr − s)/sin Θ,

Θ̇ = G (αs + r) ,
(17)

where α is the damping coefficient, G = µ0G/(1 + α2), G = 1.76 × 1011rad s−1T−1 is the electron
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gyromagnetic ratio, and r and s follow

r = − sin Φ 〈Hdx〉+ cos Φ 〈Hdy〉+ cos ΦH0 −
2Ku

µ0MS
cos Φ sin Φ sin Θ

+
3

2

λS
µ0MS

(τ − σ) cos(2Φ) sin Θ +
2A

µ0MS

(
`′

`
Φ′ sin Θ + 2Φ′Θ′ cos Θ + Φ′′ sin Θ

)
, (18)

s = cos Φ cos Θ 〈Hdx〉+ sin Φ cos Θ 〈Hdy〉 − sin Θ 〈Hdz〉+ sin Φ cos ΘH0

+
2Ku

µ0MS
cos2 Φ sin Θ cos Θ +

3

2

λS
µ0MS

cos Θ sin Θ [(τ + σ) + sin(2Φ)(τ − σ)]

+
2A

µ0MS

(
`′

`
Θ′ + Θ′′ − Φ′2 cos Θ sin Θ

)
. (19)

Here, ḟ ≡ ∂f/∂t and f ′ ≡ ∂f/∂x. Since
〈
~Hd

〉
is given by an integral expression depending on Θ and

Φ (see Eqs.(5) and (15)), Eq.(17), combined with Eqs.(18) and (19), represents a system of two strongly
non-linear partial integro-differential equations. To solve it, we developed an ad hoc numerical procedure
based on an implicit nonlinear finite difference scheme combined with a precise calculation of the actual
demagnetization field [40]. This methodology has been successfully tested against the exact Walker
solution, describing the dynamics of a DW driven by a magnetic field [46]. Moreover, all solutions have
been validated by testing their stability to large variations of the time step ∆t and the discretization
interval ∆x. Of course, the analysis of the system proposed in the present paper could be performed
with standardmicromagnetic simulations. However, the numerical solution of our equations is less costly
from the computational point of view and the discussed model provides a deeper understanding of the
underlying physics.

3 Results
We present here the results concerning the dynamics of the system represented in Fig.1, obtained through
the solution of Eqs.(17), (18) and (19) introduced in previous section. A TbCo2/FeCo multilayered na-
nostripe withMs = 64×104A/m,A = 9×10−12J/m,µ = 80GPa, ν = 0.25, λS = 2×10−4 is the repre-
sentative nanomagnet [39]. We use Ku = 37.5× 103J/m3, H0 = 20× 103A/m and 0.06 ≤ α ≤ 0.12,
which are reasonable values in real systems. We also adopt the piezoelectric PMN-PT ceramic with
d32 = 600pC/N and d31 = −1900pC/N [50].

We first discuss a parabola shaped nanostripe with thickness h = 10nm and `(x) = a+ 4 b−a
L2 x

2, where
a = `(0) = 40nm (central width), b = `(±L/2) = 70nm (width at extremities) and L = 400nm (see
Fig.2a). If ~H0 = 0 and ~E0 = 0, we consider a Néel DW at x = 0, between two domains of opposite
magnetization (initial metastable condition). If ~H0 6= 0 the states are tilted but still have the same energy,
keeping the DW at x = 0. This equilibrium configuration is found with a nonlinear relaxation method
applied to the equations r = 0 and s = 0 [39, 40], and is taken as initial condition to analyze the
dynamics through Eq.(17). Indeed, when ~E0 6= 0 is applied, the DW moves so as to reduce the size
of the domain with higher energy density. By virtue of the adopted geometry with variable section, the
DW reaches a final equilibrium position x∞DW = limt→∞ xDW (t) depending on the strength of E0 (see
Fig.1c). There is in fact an exchange energy cost to increase its surface [39, 40]. The DW position can
thus be unequivocally controlled and is symmetric for opposite values of E0 (see again Fig.1c).

Contrary to the static response, the dynamics described by Φ = Φ(x, t) and Θ = Θ(x, t) (see Fig.2b),
and xDW (t) (see Fig.2c) exhibits a remarkable asymmetry betweenE0 > 0 andE0 < 0. This intriguing
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Figure 2 – Dynamics of the magnetic DW in the nanostripe with parabolic (a) and constant (e) section.
(b,f) Evolution of the magnetization angles Θ(x, t) and Φ(x, t) (inset) obtained with E0 = ±0.8MV/m
and the damping parameter α = 0.1 (angles versus x at different times t). If E0 > 0, the DW moves to
the left (x < 0), and if E0 < 0, the DW moves to the right (x > 0). (c,g) Time evolution of xDW for
α1 = 0.12, α2 = 0.1, α3 = 0.08 and α4 = 0.06 and for the indicated values of E0. (d,h) Asymmetric
behavior of the DW velocity (average value 〈vDW 〉 for the parabolic nanostripe and steady-state value
vDW for the uniform nanostripe) versus electric field E0 for the above values of α.

behavior is caused by the disparity d32 6= −d31. Indeed, σ and τ fulfil the relation |τ | > |σ| (and
they are always of opposite sign). It means that if E0 > 0, the DW moves to the left (x < 0) with a
compression |τ | larger than the tension σ ; conversely, if E0 < 0, the DW moves to the right (x > 0)
with a tension τ larger than the compression |σ|. Since a compression induces a planar anisotropy from
the magnetic point of view (perpendicularly to its direction) and a traction induces an axial anisotropy
for the magnetization (along its direction), the motions to the left and to the right are not dynamically
equivalent. They are so only if d32 = −d31, when the identity τ = −σ is verified. In both directions of
motion, unusual out-of plane excursions appear locally. When the compression is larger than the tension
(E0 > 0), the prevailing planar anisotropy induces out-of-plane excursions with considerable deviation
ofΘ from π/2 (see Fig.2a, x < 0), and the DW propagation is sensibly hindered [51]. On the other hand,
when the tension is larger than the compression (E0 < 0), the out-of-plane excursions are comparatively
reduced (see Fig.2a, x > 0), and the DW motion is facilitated. As shown in Figs.2d, this phenomenon
is more intense for large values of |E0|. In Fig.2d, the quantity 〈vDW 〉 is defined as the average velocity
over the path from the origin to the position 2

3x
∞
DW . While for E0 < 0, with increasing |E0| we observe

a maximum of 〈vDW 〉 and a following slight velocity decrease, for E0 > 0 increasing values of E0

lead to a minimum of 〈vDW 〉 immediately followed by a strong velocity reduction. This is consistent
with the previous interpretation based on the magnetic planar and axial anisotropy. Noteworthy, for
|E0| < 0.6MV/m, we have a quite linear and symmetric response, a convenient feature for technological
applications. This point is substantiated by calculating the energy consumption for moving the DW from
x∞DW (−E0) to x∞DW (+E0). The magnetic dissipation for the case with E0 = 0.4MV/m and x∞DW =

±60nm corresponds to Em = 10−3fJ. Moreover, if we consider a cubic piezoelectric substrate of side
d=800nmwith relative permittivity εr = 3500, the electric energy consumed isEe = CV 2 = ε0εrd

3E2
0

(where C = ε0εrd and V = E0d). With E0 = 0.4MV/m, we obtain Ee = 2.5fJ � Em for a DW
displacement of 120nm for this geometry. If permanent magnets generate ~H0 [52], they do not dissipate
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Figure 3 – Representations of the domain wall configuration in motion within the nanostripe with
constant section. We show two different cases driven by negative and positive electric fields, correspon-
ding to axial and planar effective magnetic anisotropy, respectively. We observe that the out-of-plane
behavior is more pronounced for positive electric fields (planar anisotropy).

energy. To draw a comparison, the energy consumption of 200fJ has been reported to propagate a DW
for a distance of 500nm through spin-polarized currents [18, 22]. Then, in the latter case the dissipation
is about 20 times higher.

From a fundamental perspective, our results for the parabolic profile revealed a specific magnetic confi-
guration with an out-of-plane excursion (Θ 6= π/2) in proximity to the DW. In order to further investigate
this point, we analyzed the DW propagation in a constant-section infinitely-long nanostripe (see Fig.2e),
andwe confirmed the existence of an unusual out-of-plane excursion. This dynamics is therefore substan-
tially richer than the classical Walker propagation [46]. We observe the existence of a rapidly reached
steady-state regime, characterized by Φ(x, t) = Φ0(x − vDW t) and Θ(x, t) = Θ0(x − vDW t) (see
Fig.2f), where Φ0 and Θ0 represent the stationary shapes. The corresponding uniformity of the motion
is shown in Fig.2g, the steady-state velocity vDW being plotted versus the applied field E0 in Fig.2h. In
particular, Fig.2h shows that the constant section nanostripe exhibits the same asymmetric velocity beha-
vior, already observed and analyzed for the parabolic nanostripe. This configuration allows the control
of the DW velocity with the applied electric field. The behavior of the out-of-plane excursion can be
observed in Figs.3 and 4. In Fig.3 we show the shape of the domain wall for two opposite values of the
electric field. When we apply a positive field, the compressive in-plane strain is larger than the tensile
one and this configuration creates a planar magnetoelastic anisotropy in a ferromagnetic film with po-
sitive magnetoelastic coefficient [51]. Such anisotropy favors a large perpendicular-to-plane orientation
of the magnetization. On the contrary, a negative electric field induces a compressive strain larger than
the tensile one, creating an in-plane easy axis of magnetization, corresponding to smaller of the out-of-
plane excursions. This explains the asymmetry of the DW dynamics with positive and negative electric
field. The out-of-plane excursions are more pronounced for large values of |E0|, as shown in Fig.4 where
the DW shape is represented for two different values of the electric field. We observe the peculiar form
of the domain wall shape, characteristic of the magnetoelastic nanostripe and very different from the
well-known Néel or Bloch walls.

Further enhancement of magnetic DW dynamics is possible by optimizing the tilting magnetic field ~H0.
We show in Fig.5 the DW velocity versus the intensity H0 in the constant section nanostripe for the
same values of α adopted in Fig.2 and for three different values ofE0. We deduce that our mechanically
induced steady-state regime yields propagation velocities as high as 500m/s, which are comparable to
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Figure 4 – Perspective representations of the domain wall configuration in motion within the nanostripe
with constant section. We show two different cases driven by two different electric fields. We observe
that the out-of-plane behavior is more pronounced for higher electric fields.
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Figure 5 – Velocity of the DW in a constant-section infinitely-long nanostripe in terms ofH0 and α for
E0 = −0.2MV/m (a), E0 = −0.4MV/m (b), and E0 = −0.6MV/m (c). In the insets the collapse of the
linear regime obtained by plotting vDW versus H0/α is shown. In all panels we used the same values
of α introduced in Fig.2.

those obtained by current-driven DWmotion [17, 18]. In the classical field-induced Walker propagation
the dependence of the DW velocity on H0 and α is mediated by the single variable H0/α [46]. Hence,
we plot vDW versus the ratio H0/α in the insets of Fig.5. We observe that the curves corresponding to
different α collapse to a single universal response in the linear region. We also note that ∂vDW /∂ρ (for
low values of ρ = H0/α) is an increasing function ofE0, as expected. However, for higher values of the
magnetic field, vDW depends on bothH0/α and α, proving once again the essential difference between
the mechanically-induced and the field-induced DW motion.

Finally, in order to validate the approximation adopted in our model, namely the consideration of the
magnetization as a function of x and t only, we compared the solutions obtained with Eqs.(17), (18)
and (19) with micromagnetic simulations performed within the NMAG environment. In any case, the
relative error between the two techniques is found as small as 10%.



23ème Congrès Français de Mécanique Lille, 28 au 1er Septembre 2017

4 Conclusions
To conclude, we numerically demonstrated that the mechanical manipulation of DWs in magnetoelastic
nanostripes can be simply achieved through uniform stresses if we break the symmetry of the states.
The resulting moving magnetic structure, characterized by very-low energy dissipation and competitive
velocities, is fundamentally different from usual DW in nanostripes being characterized by specific out-
of-plane phenomena. The tailoring of the variable nanostripe section allows one to precisely design static
and dynamic features. For instance, the applied electric field may control the DW position in parabolic
nanostripes or the DW velocity in uniform nanostripes. Further, complex profiles `(x) with two or more
minima can be envisaged to realize hysteretic bistable or multi-stable systems. The DW motion driven
by uniform mechanical stress thus deserves experimental investigation for both fundamental physics and
applications.
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