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Résumé:  

Lors d’une analyse en régime ThermoHydroDynamique (THD) dans le domaine de la lubrification, 

l’équation de Reynolds et l’équation de l’énergie doivent être couplées pour obtenir de manière précise 

les distributions de pression et de température. La résolution de ces équations couplées dans les paliers 

hydrodynamiques est accompagnée des phénomènes de cavitation et de turbulence dans le contexte d’un 

régime transitoire. A cause de la dépendance entre température et viscosité, cette résolution devient 

non-linéaire et très couteuse en termes du temps. Par conséquent, une méthode numérique efficace, 

nommée la méthode de colocation aux points Lobbato (LPCM), est présentée dans cet article. Le calcul 

d’un patin incliné 1D utilisant cette méthode montre la réduction considérable du temps de calcul par 

rapport à la méthode de résolution classique. Puis, cette méthode numérique intègre deux modèles de 

cavitation et est appliquée à un patin parabolique. Enfin, les données d’essai dans la littérature d’un 

palier à géométrie fixe avec deux lobes sont utilisées pour valider la méthode d’un point de vue 

expérimental. 

Abstract:  

State of the art analyses of oil-lubricated journal bearings requires numerical solution of the Reynolds 

equation coupled with the energy transport equation. Generally, for a journal bearing, the resolution 

of these coupled equations must include cavitation (film rupture and reformation), turbulent flow regime 

and transient (unsteady) operating conditions. Furthermore, due to the temperature-dependent 

viscosity, the coupled system becomes non-linear and time-consuming. Thus, in this paper, a spectral 

approach named Lobatto Point Collocation Method (LPCM) is presented. The combination of LPCM 

with two different film rupture/reformation models is validated using numerical results published in the 

literature in the cases of 1D slider. The substantial reduction of the computational time is highlighted 

compared to the Natural Discretization Method (NDM). The model predictions are also compared to 

the pressure and temperature distributions measured experimentally in the case of a two lobes journal 

bearing. 
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1 Introduction  

In fluid hydrodynamic bearings with low loads and low rotational speeds, the pressure field in the fluid 

film may be described by the classical isothermal Reynolds equation. However, for higher loads and 

higher rotational speeds, the isothermal approach is no longer sufficient and the variation of viscosity 

with temperature must be taken into account to obtain accurate predictions. Therefore, Reynolds and 

energy equations have to be coupled and solved sequentially. Besides, the energy equation must be 

discretized across the thin fluid film. The number of discretization points in this direction has to be large 

enough to capture the wall temperature gradients. For the turbulent flow regime, where these gradients 

are much steeper, the number of discretization points across the film is at least one order of magnitude 

larger than the one used in laminar flow conditions. Thus, the resolution of the coupled equations is very 

time consuming especially in the case of transient analysis. Although the numerical solution of these 

coupled equations is a solved problem since many decades, efficient numerical methods aimed to reduce 

the calculation effort are still to be developed. 

In 1986, based on a Galerkin approach, Elrod and Brewe [1] developed a numerical reduction approach 

to solve the Reynolds equation coupled with the 2D energy equation with Dirichlet boundary conditions. 

Temperature and fluidity (inverse of viscosity) are approximated by third order Legendre polynomials 

across the fluid film thickness. Elrod used Lobatto point quadrature method to discretize and calculate 

the integral quantities across the film thickness. The pressure and temperature are discretized using the 

classical finite difference methods in the other directions. The method showed good agreement with 

classical approaches. In a subsequent work [2], Elrod improved the precision of the method by 

approximating the temperature and the fluidity using arbitrary orders Legendre polynomials. In 2005, 

Moraru [3] extends the approach presented by Elrod [2] to compressible fluids and takes also into 

account a temperature-dependent density. In his work, a 2D formulation of the energy equation 

neglecting the axial heat conduction is used. In contrast to [1] and [2], the density is also approximated 

by Legendre polynomials across the fluid film thickness. The governing partial differential equations 

are solved by finite difference methods with upwind scheme for numerical stability. In 2009, Feng and 

Kaneko [4] used the same approach as Moraru to calculate the temperature and the pressure distributions 

in a multi-wound foil bearing while taking into account foil deflections. Unlike Moraru, Feng and 

Kaneko solved the energy equation on a 3D computational domain using finite difference methods. In 

2015, Mahner et al. [5] used the reduction approach to analyze steady state performances of thrust and 

slider bearings operating with a compressible fluid. The authors used the Quadrature Method, the 

Modified Quadrature Method, Lobatto Point Collocation Method and the Galerkin Method in order to 

reduce number of unknowns of the discretized equations. According to the authors, all these methods 

yielded a significant time reduction compared to the classical methods.   

The aim of the present work is to develop an efficient and accurate numerical solver for the THD analysis 

of hydrodynamic bearings. Compared to the previous published studies, the present solver uses LPCM 

and takes into account the cavitation phenomenon (film rupture and reformation) which is tackled using 

two different approaches: the free boundary formulation of the incompressible Reynolds equation and 

the artificial compressibility approach. Besides, the coupled governing partial differential equations are 

solved using finite volume method and the solver is tested and validated against both numerical and 

experimental results in the literature.  

2 Theoretical analysis 

When taking into account the temperature-dependent viscosity, it is mandatory to solve sequentially the 

generalized Reynolds equation and the energy equation to obtain accurate pressure and temperature 

distributions in the fluid film.  



23ème Congrès Français de Mécanique                              Lille, 28 Août au 1er Septembre 2017 
 

3 
 

2.1 Generalized Reynolds Equation with cavitation 

For a journal bearing where the wall velocities are 𝑢(𝑥, ℎ, 𝑧) = 𝑈 and 𝑢(𝑥, 0, 𝑧) =  0, the generalized 

Reynolds equation writes [9] : 

𝜕

𝜕𝑥
(𝐺
𝜕𝑝

𝜕𝑥
) +

𝜕

𝜕𝑧
(𝐺
𝜕𝑝

𝜕𝑧
) = −𝑈

𝜕(𝐹)

𝜕𝑥
 Eq.1   

where 

𝐺 = 𝜌 [∫ 𝐼1𝑑𝜉
ℎ

0

−
𝐽1
𝐽0
∫ 𝐼0𝑑𝜉
ℎ

0

]  ;    𝐹 = 𝜌
∫ 𝐼0𝑑𝜉
ℎ

0

𝐽0
  Eq.2   

𝐼0 = ∫
1

𝜇
𝑑𝜉

𝑦

0

 ;  𝐼1 = ∫
𝜉

𝜇
𝑑𝜉

𝑦

0

  ;  𝐽0 = ∫
1

𝜇
𝑑𝜉

ℎ

0

 ;   𝐽1 = ∫
𝜉

𝜇
𝑑𝜉

ℎ

0

 Eq.3   

Two approaches were used in the present work for the film rupture and reformation.  

The first approach is based on the classical free boundary formulation of the incompressible Reynolds 

equation. It uses Jakobsson, Floberg and Olsson (JFO) cavitation model, implemented by Elrod and 

Adams [6], and assumes that the density in full film region is constant and that the pressure is equal to 

the cavitation pressure in the ruptured zone. The key point of JFO model is a filling fraction  𝜃 ∈ [0,1] 

for taking into account the effective density in the ruptured film zone. The 𝑝 − 𝜃 formulation of JFO 

model is: 

𝜕

𝜕𝑥
(𝐺
𝜕𝑝

𝜕𝑥
) +

𝜕

𝜕𝑧
(𝐺
𝜕𝑝

𝜕𝑧
) = −𝑈

𝜕[(1 − 𝜃)𝐹]

𝜕𝑥
 Eq.4   

In 2015, Woloszynski et al. [7] used an efficient algorithm, called Fischer-Burmeister-Newton-Schur 

(FBNS), for solving the JFO model under the complementary constraint (𝑝 − 𝑝𝑐𝑎𝑣𝑖)𝜃 = 0  in two-steps. 

This algorithm was integrated in the current solver. 

The second method is based on an artificial compressibility model (ACM) that modifies the density of 

the lubricant in the cavitation region. Instead of using a mathematical constraint (𝑝 − 𝑝𝑐𝑎𝑣𝑖)𝜃 = 0, this 

approach assumes that the fluid film is a homogenous mixture and that the density is a pressure-

dependent thermodynamic variable. The density in cavitation region is a combination of gas density 𝜌𝑔 

and lubricant density 𝜌𝑙: 

𝜌 = (1 − 𝜃)𝜌𝑙 + 𝜃𝜌𝑔 Eq.5   

The faction 𝜃 in Eq.5 has the same role as 𝜃 in JFO model. If the faction is zero ( 𝜃 = 0 ) there is no 

cavitation and the fluid film is complete. If 0 < 𝜃 ≤ 1, film rupture is present and the fluid film is a 

homogenous mixture of lubricant and gas. In order to avoid abrupt transitions between ruptured and full 

film zones, 𝜃 is calculated by a regularized pressure-based law (Eq.6). The regularization is performed 

using the coefficient 𝛽:  

𝜃(𝑝) = 1 −
1

1 + 𝑒𝑥𝑝[−𝛽(𝑝 − 𝑝𝑐𝑎𝑣𝑖)]
 Eq.6   

2.2 3D Energy equation 

The temperature distribution in the lubricant is described by the following energy equation [9]: 



23ème Congrès Français de Mécanique                              Lille, 28 Août au 1er Septembre 2017 
 

4 
 

𝜌𝐶𝑝 (𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
)

⏟                
𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛

=
𝜕

𝜕𝑦
(𝜆
𝜕𝑇

𝜕𝑦
)

⏟  
𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛

+ 𝜇 [(
𝜕𝑢

𝜕𝑦
)
2

+ (
𝜕𝑤

𝜕𝑦
)
2

]
⏟            

𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

 
Eq.7   

In the ruptured film region, the fluid is supposed to be a homogenous mixture. The heat capacity, thermal 

conductivity and viscosity are given as [9]:  

𝜌𝐶𝑝 = (1 − 𝜃)𝜌𝐶𝑝𝑙 + 𝜃𝜌𝐶𝑝𝑔 

Eq.8   

𝜆 = (1 − 𝜃)𝜆𝑙 + 𝜃𝜆𝑔 ;  𝜇 = (1 − 𝜃)𝜇𝑙 + 𝜃𝜇𝑔 

The temperature-dependent viscosity of the liquid phase follows an exponentially decaying law:   

𝜇(𝑇) =  𝜇0𝑒
−𝛼(𝑇−𝑇0) Eq.9   

where 𝜇0 is the dynamic viscosity at the reference temperature 𝑇0 and 𝛼 is a given coefficient. 

2.3 Formulation of the equations using LPCM 

The Lobatto Point Collocation Method (LPCM) uses Legendre polynomials to approximate the 

temperature across the film thickness. Furthermore, the method simplifies the computation of the 

Dowson integrals (Eq.2 and Eq.3) in the generalized Reynolds equation. Because Legendre polynomials 

are defined on[−1, 1], the following coordinate transformation is used: 

𝑦 =
(𝜁 + 1)ℎ

2
      Eq.10   

Since the pressure is constant across the film thickness, the generalized Reynolds equation remains the 

same (i.e. Eq.1). Following the coordinate transformation, the energy equation (Eq.7) becomes: 

𝑢
𝜕𝑇

𝜕𝑥
+
2

ℎ
[𝑣 − 𝑢

(𝜁 + 1)

ℎ

𝜕ℎ

𝜕𝑥
− 𝑤

(𝜁 + 1)

ℎ

𝜕ℎ

𝜕𝑧
]
𝜕𝑇

𝜕𝜁
+ 𝑤

𝜕𝑇

𝜕𝑧

=
𝜆

𝜌𝐶𝑝

4

ℎ2
𝜕²𝑇

𝜕𝜁²
 + 

𝜇

𝜌𝐶𝑝

4

ℎ2
[(
𝜕𝑢

𝜕𝜁
)
2

+ (
𝜕𝑤

𝜕𝜁
)
2

] 

Eq.11   

For an incompressible lubricant, only the temperature 𝑇  and the fluidity  𝜉𝐹  (the inverse of the 

viscosity 𝜇), are approximated across the film thickness (Eq.12). 

𝜉𝐹(𝑥, 𝜁𝑖, 𝑧) =
1

𝜇(𝑥, 𝜁𝑖, 𝑧)
=∑𝜉�̂�𝑗(𝑥, 𝑧)𝑃𝑗(𝜁𝑖)

𝑁

𝑗=0

  ;       𝑇(𝑥, 𝜁𝑖, 𝑧) =∑�̂�𝑗(𝑥, 𝑧)𝑃𝑗(𝜁𝑖)

𝑁

𝑗=0

     Eq.12   

Where 𝑃𝑗(𝜁𝑖)  is the jth order Legendre polynomial, N is its maximum order. 𝜉�̂�𝑗(𝑥, 𝑧) , 

respectively �̂�𝑗(𝑥, 𝑧), are the polynomial coefficients of fluidity and temperature, respectively. The N+1 

polynomial coefficients 𝜉�̂�𝑗 and �̂�𝑗 are calculated by applying the collocation method at N+1 Lobatto 

points ([3], [4]). These points are the N-1 internal Lobatto points (i.e. the roots of 𝑑𝑃𝑁 𝑑𝜁⁄ ) and the two 

boundary points 𝜁 = −1 and 𝜁 = 1.  

Compared to the Natural Discretization Method (NDM) which computes the temperature by solving the 

3D energy equation discretized over the film thickness, the LPCM calculates the polynomial coefficients 
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of temperature �̂�𝑗. For a given (𝑥, 𝑧) position, the temperature in Eq.11 is replaced by its decomposition 

(i.e. Eq.12) for each internal Lobatto 𝜁 = 𝜁𝑖 , 𝑖 ∈ [1, … , 𝑁 − 1] across the fluid film leading to a partial 

differential equations with the N+1 unknown �̂�𝑗 . The boundary conditions are applied at 𝜁 = −1 

and 𝜁 = 1. The Dirichlet boundary condition at the journal surface  𝑇0 and the Neumann boundary 

condition 𝜙𝑞 at the bearing are implemented by setting: 

𝑇0 = 𝑇(𝑥, 1, 𝑧) =∑𝑃𝑗(1)�̂�𝑗(𝑥, 𝑧)

𝑁

𝑗=0

 Eq.13  

𝜙𝑞 =
𝜕𝑇

𝜕𝜁
|
𝜁=−1

=∑
𝜕𝑃𝑗

𝜕𝜁
|
𝜁=−1

�̂�𝑗

𝑁

𝑗=0

 Eq.14  

In all, a system of N+1 equations for the N+1 unknown �̂�𝑗 is obtained. 

Following Eq.12, the quantities 𝐺 and 𝐹 in the generalized Reynolds equation (Eq.1) can be simplified 

by using the polynomial coefficients of the fluidity 𝜉�̂�𝑗. The development of the Dowson integrals (Eq.3) 

following the coordinate transformation is detailed in [3] and [4]. 

𝐺 = − 
𝜌ℎ3

12
(𝜉�̂�0 +

2

5
𝜉�̂�2 −

𝜉�̂�1
2

3𝜉�̂�0
) ;   𝐹 = 𝜌ℎ (

𝜉�̂�0
2
−
𝜉�̂�1
6
) Eq.15   

2.4 Numerical scheme and resolution 

Finite volume method is used to discretize the energy and the Reynolds equations. For stability reasons, 

the temperature at the face cells is approximated using the upwind discretization scheme. The coupled 

system of equations (Reynolds equation and energy equation) are solved in a sequential way.  

3 Validation and discussion 

The current numerical approach was validated by confrontations with 3 test cases published in the 

literature. The first case is an infinite inclined slider bearing. The LPCM is validated by comparing the 

numerical solution to the reference results obtained by Elrod. In the meantime, this case shows also the 

efficiency of LPCM compared to NDM in terms of computational time. The second case uses a parabolic 

slider to validate the cavitation models. The third and last case compares the pressure and the 

temperature measured in a two-lobe journal bearing with the predictions of the present solver. 

3.1 The inclined 1D slider bearing 

 
Figure 1 Geometry of the 1D slider 

The new solver is applied to predict pressure and temperature of an oil lubricated 1D infinite slider 

presenting a linearly decreasing film thickness varying from ℎ1 =  182.88 𝜇𝑚  to ℎ2 =  91.44 𝜇𝑚 
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(Figure 1). The top wall is stationary while the bottom wall has a constant velocity 𝑈 = 31.946 𝑚/𝑠. 

The density of the lubricant is 𝜌 = 800 kg/m3, the specific heat capacity 𝐶𝑝 = 2.0 𝑘𝐽 ∙ 𝑘𝑔
−1 ∙ 𝐾−1 and 

the thermal conductivity 𝜆 =  0.14  𝑊 ∙ 𝑚−1 ∙ 𝐾−1 . The temperature-dependent viscosity follows an 

exponentially decaying law 𝜇(𝑇) = 0.13885𝑒−0.045(𝑇−20.0). The computational domain is discretized 

using 30 control volumes (CV) in the main flow direction and 10 Lobatto points across the film 

thickness.  

Figure 2 depicts the pressure distribution along the main flow direction. The pressure predicted by the 

current model shows good agreement with the results published by Elrod [2]. Figure 3 presents the 

variation across the film thickness of the outlet temperature. Again, the predictions of the current model 

show good agreement with [2].   

  

Figure 2: Pressure distribution  
Figure 3: Outlet temperature distribution across 

the fluid film 

This 1D inclined slider is also used to compare the efficiency of the LPCM compared to the NDM. Since 

LPCM reduces the number of the overall system unknowns, it is necessary to carry out a grid dependent 

test for the NDM prior to any efficiency comparison. Seven different grid refined in the y direction are 

used (10, 20, 40, 60, 80, 100, and 120 equally spaced CV) while the number of control volumes is kept 

fixed in the x direction and equal to 30. The relative error between two successive grids in terms of wall 

temperature gradients is defined as: 

𝜀𝐾(𝑦 = 0 𝑜𝑟 ℎ) =

√1
𝑛
∑ (

𝜕𝑇𝐾(𝑥𝑖, 𝑦)
𝜕𝑦

−
𝜕𝑇𝐾+1(𝑥𝑖, 𝑦)

𝜕𝑦
)
2

𝑛
𝑖=1

√1
𝑛
∑ (

𝜕𝑇𝐾+1(𝑥𝑖, 𝑦)
𝜕𝑦

)
2

𝑛
𝑖=1

   Eq.16  

where 𝑛 = 30 is the number of CVs in x direction and K is the grid refinement level in the y direction.  

 

Figure 4 shows that 40 CVs in y direction are necessary to reach a satisfactory mesh-independent 

solution while keeping a reasonable computational cost (Figure 5). Thus, the solution obtained by NDM 

with 40 equally spaced CVs over the film thickness is considered as the reference. 

Figures 6 and 7 present the variation of the temperature gradient at the walls along the main flow 

direction (x direction) for different number of Lobatto points. The aforementioned figures show that 9 

Lobatto points are sufficient to reach a good agreement with the results obtained by the NDM with 40 

equally spaced CVs (considered as the reference).  
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  Figure 6: Temperature gradient at the top wall with 

different number of Lobatto points 
  Figure 7: Temperature gradient at the bottom 

wall with different number of Lobatto points 

The relative error between the reference temperature gradients at the walls (obtained using NDM) and 

the ones predicted by using N Lobatto points is defined as: 

𝜀𝑁𝐿𝑜𝑏𝑎𝑡𝑡𝑜(𝜁 = −1 𝑜𝑟 1) =

√1
𝑛
∑ (

𝜕𝑇𝑁𝐿𝑜𝑏𝑎𝑡𝑡𝑜(𝑥𝑖, 𝜁)

𝜕𝜁
−
𝜕𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑥𝑖, 𝜁)

𝜕𝜁 )

2

𝑛
𝑖=1

√1
𝑛
∑ (

𝜕𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑥𝑖, 𝜁)

𝜕𝜁
)
2

𝑛
𝑖=1

 Eq.17   

where 𝜁 = 1 𝑜𝑟  𝜁 = −1 , 𝑛 = 30 is number of CVs in x direction 
𝑑𝑇𝑁𝐿𝑜𝑏𝑎𝑡𝑡𝑜

𝑑𝜁
 : temperature gradient obtained by LPCM with N Lobatto points 

 
𝑑𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑑𝜁
 : reference temperature gradient obtained by NDM with 40 CVs across the film thickness. 

 

Figure 8 depicts the variation of the relative error (Eq.17) with the number of Lobatto points. The relative 

error drops rapidly and remains below 2% starting from 11 Lobatto points. Figure 9 shows that the 

computational time for the LPCM does not exceed 2 seconds while the reference method takes about 18 

seconds. The economy of computational time brought by the LPCM approach is important. 
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Figure 5: Computational time of NDM in 
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Figure 8: Relative error between LPCM and NDM 

versus the number of Lobbato points 

Figure 9: Computational time in function of 

numbers of Lobatto points. 

 

3.2 The parabolic 1D slider 

A parabolic 1D slider proposed by Vijayaraghavan and Keith [8] in 1989 was used to validate the 

cavitation models. The slider length is 76.2 mm, the minimum and maximum film thickness are 25.4µm 

and 50.8µm, the sliding speed is U = 4.57m/s and the atmospheric pressure is imposed at the inlet and 

outlet. The lubricant viscosity is constant and equal to 0.039 𝑃𝑎 ∙ 𝑠. The comparison of two cavitation 

approaches (ACM and FBNS) with the published reference results from [8] is shown in Figure 10. 

 

Figure 10: Comparison of pressure distribution obtained by different models for the parabolic slider 

3.3 Journal bearing with axial groove 

A recent experimental work was published by Giraudeau et al. [10] in 2016 to analyze the effect of 

geometrical discontinuities in the case of a two-lobe journal bearing with an axial supply groove. The 

tested bearing length is 68.4 mm and its diameter is 100 mm. The radial assembly clearance is 68 𝜇𝑚 

while the radial bearing clearance is 143 𝜇𝑚. The bearing is lubricated using an ISO VG 46 oil supplied 

at a constant pressure of 0.17 MPa and at a constant temperature of 43°C. For the calculation, the 

following oil characteristics are used: 𝜌 = 850 𝑘𝑔/𝑚3, 𝐶𝑝 = 2000 J/kg/K and 𝜆 =0.13 W/m/K. The 

viscosity of the oil is 0.0416 Pa.s at 40°C and 0.0191 Pa.s at 60°C. The variation is described by an 

exponentially decaying law similar to Eq.9. 

Three operating conditions (500 rpm and 10kN load, 2000 rpm and 8kN load and 3500 rpm and 6kN 

load) are used for comparisons. The shaft is considered to have a constant temperature estimated from 

experiments (Dirichlet boundary condition) while adiabatic wall conditions are imposed on the bushing 

(Neumann boundary condition). The computational domain is discretized using 32× 16 CVs in 

circumferential and axial directions while 11 Lobatto points are used to describe the temperature 

variation across the fluid film. Results are shown only for the loaded lobe (i.e lower lobe) where the 

0,00%

3,00%

6,00%

9,00%

12,00%

15,00%

3 5 7 9 11 13 15 17 19

R
e

la
ti

ve
 e

rr
o

r

Number of Lobatto points

Top wall

Bottom wall

0,1

1

10

100

3 5 7 9 11 13 15 17 19

ti
m

e
 in

 s
e

co
n

d
e

 (
s)

Numbers of Lobatto points

Lobatto

Reference

0

1

2

3

4

0 0,02 0,04 0,06 0,08

P
re

ss
u

re
  (

M
P

a)

x [m]

ACM

FBNS

Reference



23ème Congrès Français de Mécanique                              Lille, 28 Août au 1er Septembre 2017 
 

9 
 

thermal effects are more important. Figures 11-16 depict the pressure and the temperature variation in 

the circumferential direction. The predicted pressures show good agreement with the measurements. 

The predicted temperature shows a reasonable agreement with the measurements and the quality of the 

prediction could be improved if the thermo-deformation of the bushing is considered and the thermal 

boundary conditions for the energy equation are refined. 

 

  
Figure 11: Comparison of measured pressures and 

current THD solver  

(500 rpm, 10kN load) 

Figure 12: Comparison of measured 

temperatures and current THD solver  

(500 rpm, 10kN load) 

  
Figure 13: Comparison of measured pressures and 

current THD solver  

(2000 rpm, 8kN load) 

Figure 14: Comparison of measured 

temperatures and current THD solver  

(2000 rpm, 8kN load) 

  
Figure 15: Comparison of measured pressures and 

current THD solver  

(3500 rpm, 6kN load) 

Figure 16: Comparisons of measured 

temperatures and current THD solver  

(3500 rpm, 6kN load) 

 

4 Conclusion and prospective 

An efficient numerical solver for thermo-hydrodynamic analysis of journal bearing in steady state 

regime was developed using LPCM. This spectral method provides an important reduction of the 

calculation time and can be coupled with cavitation algorithms to perform THD analyses of journal 
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bearings. Two cavitation algorithms were integrated in the present solver to take into account the film 

rupture and reformation. Finally, the numerical solver was validated against numerical and experimental 

data from the literature. Even though the thermal deformation of the bushing is not considered, the 

numerical results showed reasonable agreement with the experimental data. However, a thermo-elastic-

hydrodynamic analysis is necessary and planned to be performed in order to obtain a refined numerical 

solution. Furthermore, the transient regime will be integrated in the solver. 

 

Nomenclature 

𝑥 coordinate in the x direction [m] 𝛽 coefficient of cavitation model [-] 

𝑦 coordinate in the y direction [m] 𝑢 velocity field in the x direction [m s-1] 

𝑧 coordinate in the z direction [m]  𝑣 velocity field in the y direction [m s-1] 

𝜁 
coordinate transformation in y direction 

[-] 
𝑤 velocity field in the z direction [m s-1] 

𝑝 Pressure [Pa] 𝑇 Temperature [°C] 

ℎ Film thickness [m] 𝐶𝑝 specific heat capacity [J kg-1 °C-1] 

𝜌 Density [kg m-3] 𝜆 thermal conductivity [W m-1 °C-1] 

𝜉 parameter of integration  𝜉�̂�𝑗 polynomial coefficients of fluidity 

𝜇 dynamic viscosity [Pa.s] 𝑃𝑗 Legendre polynomial  

𝑈 velocity of mobile slider [m s-1]  �̂�𝑗 polynomial coefficients of temperature 

𝜃 Filling fraction in cavitation models  𝜙𝑞 temperature gradient [°C m-1] 

𝑝𝑐𝑎𝑣𝑖 cavitation pressure  𝜉𝐹 fluidity [Pa-1 s-1] 
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