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Résumé
Des matériaux comme le béton ou les polymères présentent du fluage. Sous chargement uniaxial main-
tenu constant, des déformations différées à la fois axiales et transverses sont observées. La générali-
sation du coefficient de Poisson au contexte du fluage n’étant pas univoque, de nombreuses définitions
différentes ont été proposées dans la littérature associée au béton. De plus, l’évolution attendue en fonc-
tion du temps (croissante, décroissante, non monotone) des coefficients de Poisson viscoélastiques a fait
l’objet de débats. Cette contribution propose de revenir aux bases de la viscoélasticité linéaire, afin de
rappeler les définitions des coefficients de Poisson de fluage et de relaxation. L’équivalent viscoélastique
du classique formulaire reliant les caractéristiques élastiques isotropes est aussi rappelé sous une forme
synthétique. Les possibles évolutions des coefficients de Poisson sont illustrées sur plusieurs exemples
académiques et pratiques, sur le béton et les polymères. Les résultats sont issus à la fois de modèles et
de données expérimentales.

Abstract

Materials such as concrete and polymers exhibit creep. Under sustained and constant uniaxial stress
loading, axial and transverse delayed strains are observed. Generalization of the elastic Poisson’s ra-
tio to the context of creep being ambiguous, numerous different definitions have been proposed in the
literature associated to concrete. Moreover, the expected evolution with respect to time (increasing, de-
creasing, non monotonic) of viscoelastic Poisson’s ratios has been a subject of debate. This contribution
proposes to go back to basics of linear viscoelasticity, to recall the definitions of creep and relaxation
Poisson’s ratios. The viscoelastic equivalents of the classical relations between the elastic isotropic char-
acteristics are also recalled in a compact form. The possible evolutions of viscoelastic Poisson’s ratios
are illustrated on various examples, both academic and practical, on concrete and polymers. Results
come from both models and experimental data.
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1 Introduction
Materials such as concrete and polymers exhibit creep. Under sustained and constant uniaxial stress
loading, axial and transverse delayed strains are observed. The scientific community has thus adapted
the isotropic elastic characteristics, Young’s modulus and Poisson’s ratio, to the creep context, introduc-
ing time dependencies. While the definition of the uniaxial creep compliance (generalizing the inverse
of the Young’s modulus) is unambiguous, it is not the case regarding generalization of the Poisson’s
ratio. Indeed, in the literature dedicated to concrete, especially in the experimental domain, numerous
different definitions of delayed Poisson’s ratios have been proposed. Moreover, the expected time evo-
lution has been a subject of debate, notably regarding its monotonic (or not) character. More details and
an extensive bibliographic review can be found in [1].

On the other hand, theory of isotropic linear viscoelasticity has allowed, for several decades, to establish
rigorous generalizations of elastic Young’s modulus and Poisson’s ratio.

This communication first proposes to recall the definition of creep and relaxation Poisson’s ratios, and
their relations to the bulk and shear relaxation or compliance functions. Expressions are provided in the
ageing context as it is more general than the non ageing one; restrictions to the latter are straightforward
[1]. Second, possible evolutions of both Poisson’s ratios are illustrated on various examples. Even if the
presented elements, especially in the first part, are not new, gathering them in this communication seems
useful to help to share knowledge between the mechanics and concrete material science communities,
to improve how the multiaxial behaviour of concrete is studied.

Both academic and practical examples (on concrete and polymers) from models and experimental tests
are provided. Their aim is to show that a great diversity of time evolutions can be encountered for both
the creep and relaxation Poisson’s ratios: increasing, decreasing, non monotonic, one being monotonic
while the other is not.

2 Material behaviour in ageing linear viscoelasticity
This section introduces the ageing linear viscoelastic behaviour, in the general anisotropic case, then
particularized to isotropy. The uniaxial creep and relaxation experiments are modelled, to derive the
creep and relaxation Poisson’s ratios (respectively denoted cpr and rpr in the following). Eventually,
useful relations between viscoelastic material characteristics are gathered.

Even if these developments can be found in classical textbooks, they introduce the notations adopted in
this paper, and are recalled for comprehensiveness. Only the ageing case is presented, the equivalent
relations in the non ageing case can be derived replacing functions of time by their Laplace-Carson
transform and Volterra products by classical products in the Laplace-Carson domain (see [1] for more
details).

2.1 Anisotropic linear viscoelasticity
The linear viscoelastic behaviour is completely defined by either the relaxation or the compliance tensor
[2]. The component ijkl of the relaxation tensor R(t, t′) is equal to the stress along i, j arising at time t
for a unit strain loading step along k, l occuring at t′. Conversely, the component ijkl of the compliance
tensor J(t, t′) is equal to the strain along i, j arising at time t for a unit stress loading step along k, l
occuring at t′. Both tensors are equal to 0 when t < t′, due to the causality principle.
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The mechanical behaviour is then written for any strain or stress history, taking advantage of linearity
(Boltzmann principle):

ε(t) =

∫ t

t′=−∞
J(t, t′) : dσ(t′) or ε(t) = J(t, .) :̊ σ(.) or ε = J :̊ σ (1)

σ(t) =

∫ t

t′=−∞
R(t, t′) : dε(t′) or σ(t) = R(t, .) :̊ ε(.) or σ = R :̊ ε (2)

using Stieltjes integrals [3, 4], and where " :̊ " denotes the so-called Volterra integral tensor operator, in
memory of Volterra’s pioneering works [3]. The relaxation and compliance tensors are inverses in the
sense of the Volterra integral tensor operator (H being the Heaviside function):∫ t

t′=−∞
R(t, t0) : dJ(t0, t′) = H(t− t′)I or R(t, .) :̊ J(., t′) = H(t− t′)I or R :̊ J = HI (3)

2.2 Isotropic linear viscoelasticity
A presentation of this topic was given by Mandel as early as 1958 [5]. The relations presented here are
close to Mandel ones except that analogs of the bulk and shear moduli in elasticity are used instead of
Lamé coefficients.

2.2.1 General stress or strain histories

The material being isotropic, the behaviour can now be described by two scalar functions. A convenient
way to write the isotropic behaviour is to express the relaxation and compliance tensors on the basis J,K
of isotropic fourth order tensors:

R(t, t′) = 3Rk(t, t
′)J + 2Rg(t, t

′)K and J(t, t′) =
1

3
Jk(t, t

′)J +
1

2
Jg(t, t

′)K (4)

introducing the bulk Rk and shear Rg relaxation functions, and the bulk Jk and shear Jg compliance
functions. The scalar factors 3 and 2 are introduced to mimic the expressions of the elastic isotropic
stiffness and compliance tensors as functions of bulk and shear moduli.

According to (3), the bulk (resp. shear) relaxation and compliance functions are inverses in the sense of
the Volterra integral operator:

Rk ◦ Jk = H and Rg ◦ Jg = H (5)

The aim is now to derive the ageing linear viscoelastic "equivalents" of the Young’s modulus and Pois-
son’s ratio, by analogy with their definition in elasticity. This is performed simulating uniaxial creep and
relaxation experiments, and using the recalled ageing linear viscoelastic behaviour to compute strain or
stress evolutions.
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2.2.2 Case of the uniaxial creep experiment

In the uniaxial creep experiment, for any loading time t0, the stress tensor evolution is prescribed as:

σ(t) = σ011H(t− t0)e1 ⊗ e1 (6)

The "uniaxial compliance function" JE is then defined as:

JE(t, t0) =
ε11(t)

σ11(t)
= (Jk/9 + Jg/3)(t, t0) (7)

While the "creep Poisson’s ratio" νc is defined as:

νc(t, t0) = −ε22(t)
ε11(t)

= −(Jk/9− Jg/6)(t, t0)

(Jk/9 + Jg/3)(t, t0)
(8)

As is well-known, the cpr is not constant unless the bulk and shear compliances are proportional which
might be reasonable or not depending on the considered material. These equations (7, 8) are identical
to equations given by Bažant [6, 7].

The inverses of the compliances (but not directly the relaxations) and the cpr verify the same relations
as their counterparts (in terms of inverses of stiffnesses) in elasticity. Let us also note that the partial
time derivative of the cpr can be conveniently written as a function of the ratio of the shear and bulk
compliances:

∂νc
∂t

(t, t0) =
9

2

∂(Jg/Jk)
∂t (t, t0)(

3
Jg
Jk

(t, t0) + 1
)2 (9)

This relation has the important consequence that the time variations of the cpr are identical to those of
the ratio of the shear and bulk compliances.

2.2.3 Case of the uniaxial relaxation experiment

In the uniaxial relaxation experiment, the evolution of the component 11 of the strain is prescribed as:

ε11(t) = ε011H(t− t0) (10)

while the components 22, 33, 23, 13, 12 of the stress tensor are constantly equal to 0. The "uniaxial
relaxation function" RE is then defined as:

1

RE(t, t0)
=
ε11(t)

σ11(t)
=

1

(Jk/9 + Jg/3)−1(t, t0)
(11)

where the inverse "−1" is defined in the sense of the Volterra integral operator "◦". While the "relaxation
Poisson’s ratio" νr is defined as:

νr(t, t0) = −ε22(t)
ε11(t)

= −
(

(Jk/9− Jg/6) ◦ (Jk/9 + Jg/3)−1
)

(t, t0) (12)

In the framework of non ageing linear viscoelasticity, this coefficient has been defined in the Laplace-
Carson domain by [4, 2] (under the name relaxation Poisson’s ratio) and [8] (under the name viscoelastic
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Poisson’s ratio), and also in the general case and in the time domain by [9].

The rpr can also be written:

νr(t, t0) =
(

(2Rk + 2Rg/3)−1 ◦ (Rk − 2Rg/3)
)

(t, t0) (13)

This relation is similar to a relation given by Mandel [5].

2.2.4 Relations between viscoelastic properties

The main relations between compliance and relaxation functions, and viscoelastic Poisson’s ratios are
gathered in table 1. The fact that the uniaxial compliance and relaxation functions are inverses (in the
sense of the Volterra integral operator) comes from (7) and (11). The relation between both Poisson’s
ratios is derived combining (8), (12) and (7). Note that the product between νc and JE is the usual
product between scalars, while the product between νr and JE is the Volterra integral operator. This
relation can be found, for example, in [2, 9]. As mentioned by [10], it is different from the relation
derived by Lakes and Wineman in [11].

JE = (Jk + 3Jg)/9 RE = 9Rg ◦ (Rg + 3Rk)
−1 ◦Rk

νc = (3Jg − 2Jk)/ [2(3Jg + Jk)] νr = [2(3Rk +Rg)]
−1 ◦ (3Rk − 2Rg)

Jk = 3(1− 2νc)JE Rk = (RE/3) ◦ (H− 2νr)
−1

Jg = 2(1 + νc)JE Rg = (RE/2) ◦ (H + νr)
−1

Rk ◦ Jk = H Rg ◦ Jg = H RE ◦ JE = H νcJE = νr ◦ JE

Table 1: A summary of useful relations in ageing linear viscoelasticity (note that the inverse "−1" is
defined in the sense of the Volterra integral product "◦", while "/" is the classical scalar division).

3 Discussion on creep and relaxation Poisson’s ratios
Even if the aforementioned theory has been known for a long time in the continuum mechanics commu-
nity, discussions are still needed on some issues (see [1] for more discussions).

3.1 Variation of the viscoelastic Poisson’s ratios
As shown in equation (9), the partial time derivative with respect to t of the cpr can be related to the
time derivative of the ratio Jg/Jk, and has the same sign. This makes clearer the common sense that
if creep is faster in shear, the cpr increases, while if it is faster in volume, it decreases. In fact it is not
the ratio of the derivatives of the compliances which is concerned, but the derivative of the ratio of the
compliances. Therefore, if the ratio Jg/Jk decreases, the cpr also decreases. However, the authors were
not able to derive a similar general result on the variation of the rpr, which would have been useful
to verify Tschoegl’s statement [12] that the viscoelastic Poisson’s ratio (corresponding to our rpr) is a
non-decreasing function of time. Instead of that, practical examples will be shown in section 4 both in
ageing and non ageing viscoelasticity, in contradiction with that statement which was already pointed
out to be wrong by Lakes [11].
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3.2 Correspondence principle and viscoelastic Poisson’s ratio
It has been argued in the literature that the elastic/viscoelastic analogy does not apply to the viscoelastic
Poisson’s ratio [13]. It has been shown here that one just needs to be careful so as to correctly define the
Poisson’s ratio in viscoelasticity. If one deals with the cpr, which is commonly used by experimental
researchers, particularly in the field of concrete science since it is straightforward to compute from
experiments, the correspondence principle cannot be used. However, the latter can be used with the
rpr, which can be easily computed if the cpr and the uniaxial compliance are known (the numerical
inversion of the integral equation can be done following [14, 15]).

As mentioned earlier, due to the validity of the correspondence principle for the rpr, some authors have
used it to define the rpr directly in the transformed domain [2, 8, 16, 11, 12, 17].

3.3 Comparison with Hilton’s classification
It has been argued by Hilton [13], amongst others, that the viscoelastic Poisson’s ratio is load-history
dependent, and that this fact prevents from using these functions to describe the material behaviour in
general cases. Here, following early works on linear viscoelasticity, it has been shown that although
the viscoelastic Poisson’s ratio is load-history dependent, it is perfectly consistent to accept this fact and
define two particular cases of viscoelastic Poisson’s ratio which are called relaxation and creep Poisson’s
ratio since they are equal to the opposite ratio of transverse to axial strains in experiments of the same
name. Both these coefficients can be used in the time domain to describe generally the behaviour of any
isotropic linear viscoelastic solid. However, it has also been shown that only the rpr can be used in the
transformed domain in the non ageing case.

It is interesting to note that the two viscoelastic Poisson’s ratio defined here are not perfectly consistent
with the five classes of Poisson’s ratios defined by Hilton [18, 19]. Class I corresponds to the opposite
of the ratio of transverse to axial strains, without further precisions about the loading. Class II is based
on the same equation, except that the axial strain is constant, without further information about strains
or stresses in the other directions. Class III is based on Fourier transform but again the loading is not
specified. Class IV and V are based on the Hencky strain and on the strain rates respectively. Therefore,
the definitions used in this paper both belong to Class I, for two different particular loadings correspond-
ing to the uniaxial creep and relaxation experiments. Some additional classes of viscoelastic Poisson’s
ratios are defined in [20], but again the distinction between cpr and rpr (both belonging to class I) is
not made, and the relation between these coefficients is not given.

Finally, both Poisson’s ratio are valid material parameters, each having advantages or disadvantages
depending on the application. However, the use of bulk and shear compliance or relaxation functions
might be preferable, as they are unambiguous and might thus be less error prone.

4 Applications

4.1 Poisson’s ratios evolutions from theoretical models
The aim of these academic examples, from straightforward behaviours, is to illustrate the fact that vis-
coelastic Poisson’s ratios can be increasing, decreasing or even non monotonic functions of time.
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4.1.1 Non ageing viscoelasticity: Maxwell matrix and elastic inclusions

A composite material made up of elastic inclusions embedded into a Maxwell non ageing viscoelastic
matrix is first considered. To focus on the influence of the mechanical interactions between inclusions
and matrix, the elastic and viscous Poisson’s ratios of matrix are taken as equal. The cpr and rpr of
matrix are thus constant. The matrix relaxation tensor reads:

Rm(t, t′) = Eme−
t−t′
τm H(t− t′)

(
1

1− 2νm
J +

1

1 + νm
K
)

(14)

with Em the elastic Young’s modulus, νm the Poisson’s ratio, τm the Maxwell characteristic time. In-
clusions are elastic, characterised by the Young’s modulus Ei and the Poisson’s ratio νi. The volume
fraction of inclusions is denoted by fi. The effective behaviour of this matrix-inclusions composite
material is estimated using the Mori-Tanaka scheme [21] and the non ageing correspondence principle
(taking advantage of the Laplace-Carson transform). The bulk and shear effective behaviours are found
to correspond to generalized Maxwell models [22], with two Maxwell chains.

Even with such a straightforward (two Maxwell chains) rheological model, various evolutions (decreas-
ing, non-monotonic) of Poisson’s ratios are possible, see figure 1 left, where both Poisson’s ratios of
matrix and inclusions are constant and equal. This is in contradiction with Tschoegl statement that
viscous Poisson’s ratio are non-decreasing [12]. It is even possible to encounter simultaneously a mono-
tonic cpr and a non monotonic rpr, see case fi = 0.5 on figure 1 right. As can be easily shown (see
[10]), the initial and final values of the cpr and rpr are identical in the non ageing context.
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Figure 1: Non ageing Maxwell matrix and elastic inclusions: effective cpr and rpr, influence of elastic
contrast between inclusions and matrix (νi = νm = 0.4, fi = 0.3) and of inclusions volume fraction
(Ei/Em = 0.1, νi = 0.3, νm = 0.4).

4.1.2 Ageing viscoelasticity: Bažant solidification theory

To extend the non ageing analysis proposed by [10], a first application to ageing viscoelastic behaviours
is considered, using Bažant solidification theory [23] to define the bulk and shear behaviours. In this
theory, here extended to tensors, a non ageing relaxation tensor Rna is multiplied by a so-called ageing
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function fa depending on loading time t′:

R(t, t′) = fa(t′)Rna(t− t′) (15)

For the sake of simplicity, the non ageing behaviour is here represented by an isotropic Maxwell model.
Spherical and deviatoric viscoelastic properties (stiffness and viscosity) are assumed to be different:

Rna(t− t′) =

(
3ke
− t−t

′
η/k J + 2ge

− t−t
′

γ/g K
)

H(t− t′) (16)

Alternatively, the elastic (springs stiffness) and viscous (dashpots viscosity) parts of the isotropicMaxwell
behaviour can be defined introducing the elastic and viscous Young’s modulusEe, Ev and Poisson’s ra-
tio νe, νv, from the classical relations:

k =
Ee

3(1− 2νe)
, g =

Ee

2(1 + νe)
, η =

Ev

3(1− 2νv)
and γ =

Ev

2(1 + νv)
(17)

The ageing function is taken as:

fa(t′) = fa0 + (fa∞ − fa0)
(

1− e−(t
′/τa)2

)
(18)

where fa0 and fa∞ are respectively the initial and final values, and τa is the ageing characteristic time.

While both Poisson’s ratios have the same initial value (at t → t′) and rate, the final values (when
t→∞) are found to differ (figure 2), contrary to the non ageing case. Furthermore, in this application,
the cpr seems to converge when t→∞ towards a unique value irrespective of the loading time t′, while
it is not the case for the rpr. And the latter reaches much faster its asymptotic value than the cpr.
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Figure 2: Cpr and rpr for t′/τ = 0, 1, 2, 3, 4, linear and logarithmic time scales (νe = 0.4, νv = 0.1,
fa0 = 0.1, fa∞ = 1, τa/τ = 2).

4.2 Concrete
Concrete being a material exhibiting creep, cpr evolutions are investigated from both models and ex-
perimental tests.
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4.2.1 Multiscale estimation of creep Poisson’s ratio using Vi(CA)2T

Vi(CA)2T (Virtual Concrete And Cement Ageing Analysis Toolbox) is a software dedicated to the pre-
diction of concrete properties, developed at edf r&d since 2006 [24, 25]. Basically, input data is the
concrete mix design, properties of cement and aggregates used, as well as the mechanical and physical
properties of the hydrates. First, a hydration module computes the evolution of volume fractions of the
various phases of concrete (anhydrous, water and hydrates). Second, a morphological model describes
themultiscale arrangement of those phases in rves as well as the shapes of the inclusion phases (figure 3).
Finally, micromechanical models predict elasticity (based on [26]) and basic creep on microstructures
frozen once loaded, thanks to recent developments based on [27, 28]. Since the microstructure evolves
before loading, the creep response depends on the loading time. Assuming microstructure as frozen
once loaded, the non ageing correspondence principle can be used. Promising approaches to overcome
this limitation are currently developed [29, 30].

The elementary creep mechanism is still a matter of debate in the scientific community. Even once
assuming creep as originating from c-s-h "elementary bricks", various investigations on the delayed
strains at this scale can be found:

• Analysing many basic creep results from the literature, [31] showed by downscaling that the ele-
mentary creep strains in or in-between elementary bricks cannot be purely deviatoric, when con-
sidering these elementary particles as spherical. Non spherical (eg. oblate) shapes would yield a
different conclusion.

• Performing unjacketed (confining and pore pressures set as equal) creep tests on cement pastes,
[32] measured creep strains which are negligible: the spherical creep strain of the solid skeleton
of these cement pastes is negligible.

Nevertheless, the mechanism assumed here is deviatoric as in [28]: sliding at the scale of sheets in c-s-h
elementary bricks.

The cpr is very high at the lowest scales (c-s-h gels), which means that creep is almost completely
deviatoric (figure 4 left). This is consistent with the fact that the assumed elementary creep mechanism
is deviatoric. At upper scales, due to the incorporation of porosity and stiffer elastic inclusions, a larger
part of creep occurs under spherical loading. This induces a much lower cpr, which happens to remain
almost constant. The fact that, as scaling up, the asymptotic cpr gets closer to 0.2 is consistent with the
asymptotic analysis performed by [31].

This practical application (see more details in [33]) shows that cpr variations can be very diverse, in-
cluding non-monotonic (as for cement paste, see figure 4 left).

Apart from the c-s-h particles behaviour, the choice of the Poisson’s ratio of aggregates (νagg = 0.27

here) can have an impact on concrete cpr. A sensitivity analysis has been performed, increasing or de-
creasing aggregates Poisson’s ratio by 10%. At the concrete scale, the elastic Poisson’s ratio is modified
by less than 5%, and the cpr is found to be less and less sensitive to the aggregates Poisson’s ratio as
time increases (figure 4 right).
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Figure 3: Multiscale morphology of concrete used in Vi(CA)2T V2.1.2.
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Figure 4: Left: Cprs estimated by Vi(CA)2T V2.1.2 at the main levels of the morphological model,
loading at 90 days. Right: Sensitivity of cpr of concrete estimated by Vi(CA)2T V2.1.2, with respect to
Poisson’s ratio of aggregates.
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4.2.2 Computation of creep Poisson’s ratio from biaxial tests

This final application to concrete proposes an experimental illustration. Biaxial creep tests were started
at edf in 2004 in order to gain a better knowledge of the multiaxial behaviour of concrete in nuclear
power plants concrete containment buildings. These tests have been described in [34] and will be the
focus of a detailed paper [35].

Under a biaxial state of stress, where stresses are applied in the vertical (h subscript) and horizontal (v)
directions, leaving the third direction unloaded, a direct application of (1) and (4) yields:

νc(t) =
σhεv(t)− σvεh(t)

σvεv(t)− σhεh(t)
(19)

This cpr has been computed for basic creep (difference between the strains measured in the loaded non
drying test and in the non loaded non drying test) and is plotted on figure 5. It is found to be almost
constant. Surprisingly, it is rather high (around 0.3) compared to the aforementioned model results and
to the experimental data collected by [31].
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Figure 5: Cpr computed from basic creep biaxial tests performed at edf, loading at 90 days (the shaded
area represents the uncertainty related to the thermal dilation of the sample due to temperature variations
in the testing room).

4.3 Amorphous polymers: Poisson’s ratios from bulk and shear
behaviours

Polymers also exhibit a viscoelastic mechanical behaviour. Grassia et al. [36] have collected from the
literature the bulk and shear behaviours of several amorphous polymers. They have computed the rpr
considering the material as non ageing, taking advantage of the Laplace-Carson transform, from the non
ageing equivalent of relation given in table 1. From this experimental evidence, the rpr is found to be
slightly non monotonic for one polymer (polycarbonate).

Reusing the bulk and shear compliance or relaxation functions reported by [36], both the rpr and cpr are
directly computed in the time domain, using expressions from table 1. Results are plotted on figure 6 for
both polycarbonate and polycyanurate, xM = 0.1 (the latter being the mole fraction of monofunctional
monomer used in material preparation). The rpr obtained by [36] is plotted as dots. The rprs are
consistent, up to the fact that bulk and shear compliance or relaxation functions have been manually
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digitized on [36], yielding some noise especially at lower times. The cprs are found to be slightly lower
compared to the relaxation ones, as also numerically evidenced on theoretical models (subsection 4.1.1)
for cases where the Poisson’s ratios are increasing.
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Figure 6: Cpr and rpr of polycarbonate (left) and polycyanurate, xM = 0.1 (right), computed from data
in [36].

The advantage of the cpr computation proposed here is that it only requires the inversion of relaxation
functions to compliances, which was performed by numerical time discretization. Therefore, no direct
or inverse Laplace transform was needed. One can also note that the relation (9) is available on the cpr.
This relation could have brought interesting information in the discussion about the variations of the
viscoelastic Poisson’s ratios depending on those of the compliances dealt with in [36].

5 Conclusion
Several definitions of viscoelastic Poisson’s ratios have been introduced by various scientific commu-
nities, notably in concrete and polymer fields. This paper proposes rederivations of both the creep and
relaxation Poisson’s ratios using classical integral expressions of the linear viscoelastic behaviour. Prac-
tical relations between isotropic linear viscoelastic characteristics (relaxation and compliance functions,
Poisson’s ratios) are gathered, similarly to the classical relations between isotropic elastic characteris-
tics. Eventually, several examples, both theoretical and practical, about concrete and polymers, show
that the evolution of both Poisson’s ratios can be non monotonic and quite diverse.

Restrictions on viscoelastic characteristics have been studied in a rather large extent in the non ageing
case. However, up to our knowledge, the literature still lacks such comprehensive analyses in the ageing
case. Inequalities can be found but they are more often based on intuition than on thermodynamics, and
having particular materials in mind, such as concrete. In the same line of thought, restrictions on the
viscoelastic Poisson’s ratios are not clear: depending on the author, the latter can be either monotonic
or non monotonic. Here, the possible non monotonicity has been shown resorting to examples. Even if
the cpr can be straigthforwardly bounded by −1 and 1/2 as in elasticity, these bounds are only verified
on examples as far as the rpr is concerned.

Eventually, regarding both material scale modelling and structure scale computations, while in elasticity
the isotropic behaviour can be indifferently characterized by either the bulk and shear moduli or the
Young’s modulus and Poisson’s ratio; in linear viscosity using bulk and shear relaxation (or compliance)
functions seems to be less error prone, as their definition is unambiguous.
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