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Abstract 

A stochastic approach to the filling dynamics of an open topology porous 

structure permeated with a perfectly wetting fluid is presented. From the discrete 

structure of the disordered voids network with only nearest neighbors links, we 

derive the “microscopic” (at the pores scale) dynamical equations governing the 

filling dynamics of the coupled pores and the fluid pressure dynamics. The model 

yields two fundamental consequences. The first consequence regards the 

emergence of Darcy’s law and the dependence of the predicted permeability with 

the voids network topology. The second one is the prediction of a diffusive 

dynamics for the degrees of freedom of the pores filling. These equations exhibit a 

new type of symmetry manifested by their invariance under the full/empty pores 

duality transformation jointly with the velocity reversal. Non-trivial steady non-

equilibrium pores filling states are also obtained and found to follow a Fermi-

Dirac type law. The analogy with the single occupation of lattice sites by fermions 
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is highlighted together with the corresponding hole-particle symmetry. 
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Nomenclature 

ij: stress field [Pa] 

pf: fluid pressure [Pa] 

k: permeability of the porous structure to the fluid [m²] 

: viscosity of the fluid [Pa.s] 

f: mass density of the fluid [kg.m
-3

] 

V: mean volume of the pores [m
3
] 

Vi(t): fluid volume within pore number i [m
3
] 

pi(t): fluid pressure within pore number i [Pa] 

ri: position of the center of pore number i [m] 

: porosity of the porous system [dimensionless] 

ij: conductance of the channel connected pores i and j [m.s
-2

.Pa
-1

] 

vD: Darcy’s velocity field [m.s
-1

] 

z: average number of first neighbors of a given pore [dimensionless] 

: random direction connecting one pore to its neighbors [m] 

n: pore density [m
-3

] 

pi(1,t), pi(0,t): probability for pore i to be filled or empty at time t [dimensionless] 

ϖij: probability per unit time for the fluid transfer between pores 

number i and j [s
-1

] 
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D: Diffusion constant of the filling state of the pores [m
2
.s

-1
] 

 

Introduction 

Porous media mainly consist of a solid matrix hosting a more or less dense 

network of partially interconnected voids which can exhibit a great variety of 

geometrical structures, resulting in a tight coupling between the solid matrix and 

the fluid flowing through the structure. The investigation of such media is a cross-

disciplinary field, falling within both solid mechanics and hydrodynamics. Their 

obvious complexity arises from the non-trivial topology (disordered voids 

network/connectivity features) which governs their puzzling physical behaviors. 

This topological complexity is also the main obstacle to overcome on the way to a 

comprehensive theory of these media. 

 The understanding of fluid transport in porous media is an old but 

challenging problem [1], partly because of their wide range of applications. 

Various laboratory or industrial applications involving porous structures such as 

membrane filtration, water flow through granular media, hydrocarbons 

exploitation or pollutants trapping will profit from its solution. But the more 

significant gain of such a physical understanding certainly regards the 

fundamental side where so many issues remain unanswered. But many difficulties 

obstruct the way to a satisfactory physical and mechanical solution to that 

problem. Among these difficulties, we must face the triple complexity of porous 

media: the influence of the topology of the interconnected voids network, 

including disorder, the coupling between the matrix elasticity and the fluid flow 
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and lastly, the prominent role of the spatial correlations of the filling of the pores. 

This last issue is usually not addressed in the available studies in which the 

medium is saturated with the fluid.  

Though not completely understood, the physical consequences of such 

complex topologies and geometries are highly varied. In porous media with an 

open topology (connected voids), the enhanced coupling between the solid matrix 

and the fluid phase due to their complex geometries generates significant 

variations of the velocity field (as well as thermal variations according to the 

velocities amplitudes) resulting in intense viscous dissipation. The propagation of 

acoustic waves (pressure variations) are also strongly affected by that singular 

geometry of porous media. A comprehensive account for that complexity is 

inaccessible and therefore, simplifications are necessary. Subsequently, the usual 

approaches to these many and various effects rely on a limited set of parameters 

capturing the relevant features of the complex geometry of porous media. Some of 

these parameters have a direct geometrical signification: the porosity        is 

the volume fraction associated with the voids space (or the fluid if the medium is 

saturated with the fluid), the tortuosity [2,3] for arbitrary shape voids is a 

dimensionless parameter comparing the mean microscopic kinetic energy of any 

inviscid incompressible fluid flowing through the structure to its macroscopic 

kinetic energy. That parameter incorporates the variations of the pores diameters 

and accounts for the curvature variations of the pores (or of the fluid streamlines). 

These two parameters can be assessed from appropriate measurements. Additional 

parameters regarding the fluid can be defined, such as the specific resistance 
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opposed to the fluid as deduced from Darcy’s law [1,4], Darcy’s permeability 

(effective section endowed with area units) which does not depend on the type of 

fluid and reflects the way the internal geometry of the porous medium affects the 

flow. This permeability can be assessed from frequency-dependent viscous losses 

within the medium. Other parameters are connected with thermal properties of 

such complex media. 

Many studies [5,6,7], especially numerical simulations, pointing out the 

importance of the topological features, are based on structural models of the 

matrix. In such models the structural complexity comes down to two global 

quantities defined previously, the porosity/tortuosity associated with geometrical 

features and the permeability capturing the influence of the medium on fluid 

transport. Such models suit especially mechanical needs but meet difficulties to 

handle the coupling to the flow properties. Though the reasons for these failures 

are difficult to identify clearly, it seems that the tentative reduction to a continuum 

description (necessary to apply the usual laws of mechanics and fluid flow) 

through an effective continuum medium, could be responsible for such a situation. 

The notion of an effective medium is introduced through Terzaghi’s principle [8]. 

This approach relies on Biot’s consolidation theory [9,10] treating the 

hydromechanical coupling within porous structures through an effective stress 

tensor supported by the solid matrix and incorporating the influence of the fluid 

pressure pf, 

       
   

                                                        (1)  
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Similarly, the fluid pressure depends on the matrix deformation. The coupling is 

provided by Biot’s modulus M which captures the main features of the pores 

network (not described explicitly in this continuum approach) and leads to the 

renormalization of the elastic modulii of the solid matrix [11]. The mechanical 

equations derived from equation (1) are supplemented by Darcy’s law describing 

the fluid transport, 

           
 

 
                       (2) 

This is a macroscopic velocity field depending on both the fluid viscosity  and 

the (nonlinear) permeability      
   sensitive to the matrix deformation.  

The study reported in this paper depicts an approach of porous media 

different from an effective continuum description. We propose a local approach to 

the fluid transport through random porous media based on a stochastic description 

of the flow exchange between neighboring pores. This probabilistic description 

incorporates the disordered voids network to account for the fluid diffusion 

through the structure. 

 

1. Description of the structural model 

The typical geometry of porous media we are interested in is schematized on 

figure 1. The pores (circles of the figure), with possibly varying sizes, are 

randomly distributed within the solid matrix. The fluid can flow between 

neighboring pores connected by small diameter channels. Given the fluid 

viscosity, the diameters and lengths of the channels determine their conductances 

(ij). The relevant notion of state of the network is given here by the pressure 
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values (pi) and the matrix grouping the conductances. Many flowing regimes can 

be tested by an appropriate choice of conductances and pressure: static values 

correspond to the Poiseuille flow, modulated pressures can, for instance, account 

for the Womersley regime associated with frequency dependent conductances. 

The fluid pressure within the pores and the conductance matrix of the connections 

network allow to define a specific graph encoding the topology of the porous 

structure under consideration. We will show in the next section that this graph 

determines unambiguously the dynamical behavior of the fluid flowing through 

the structure. The mechanical properties of the solid matrix (rigid or slightly 

deformable) and their coupling to the flow dynamics can be incorporated to the 

associated graph structure through additional features of the pores as their 

compliances Ci. The static compliance of any (arbitrary shape) pore is defined as 

its volume variation (pore deformation) due to the pressure variation of the fluid 

within. In the presence of a modulated flow, it can be generalized as a dynamical 

compliance connecting the Fourier spectra of the volume variations and the 

pressure variations (within the approximation of linear response). It is clear that 

this notion accounts for the mechanical coupling between the pores and the solid 

matrix. 

 

2. Coupling between pressure and filling dynamics 

We are interested here in situations of only partial filling of the voids. The 

usual situation of a porous domain saturated with an incompressible fluid has been 

addressed in many complete studies. The degrees of freedom  of the pores filling 



8 

 

are defined as the volume fraction of the pores that are filled with the fluid. We 

will restrict ourselves to the rigid matrix limit: in the situation of a complete 

filling of the pores, such a limit seems trivial (especially for an incompressible 

flow) and the overall dynamics is dominated by the fluid flow. But for partial 

filling, the situation is not trivial and requires the knowledge of the filling 

dynamics. Applying the mass conservation law to the graph of figure 1 yields for 

the i-th pore, 

      

  
                                                       (3) 

The volume of the pore is here             , V being the invariable average 

volume of the empty pores (maximal fluid volume). As the sum runs over the 

nearest neighbors of pore i with relative positions         indexed by the 

random vector  . Its average length gives the mean separation between two 

neighboring pores (or equivalently it determines the average pores density within 

the matrix). The statistical distribution of the directions   around each pore 

(connectivity fluctuations) is characterized by its average        and the 

correlation matrix  with coefficients            . As a result, equation (3) 

becomes, after a power-series expansion (component of  ) truncated to the 2
nd

 

order,  

 
      

  
 

 

 
                                                 (4) 

In this equation, we have introduced the average number z of neighbors of any 

pore and have supposed a weak dispersion of the channels lengths so that the 

conductances, which depend only on their length, are almost constant. Introducing 
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the pores density               
                 averaged (overbar) over the positions of 

the pores, we are led to the reinterpretation of equation (4) derived from the global 

equation, 

       
 

  
                                                    

 

 
         

 

 
                

 

 
     (5) 

The domain (D) is the space domain containing the porous structure. The left-

hand side member is the total fluid mass variation, the integrated expression being 

its mass density modified by the porous structure (the density of the “free” fluid 

being f). It follows from (5), treated as a mass conservation equation, that the 

effective velocity field of the fluid becomes, 

         
 

 
                                                   (6) 

We will naturally refer to the prediction (6) as the Darcy velocity field since it has 

the form of the usual Darcy law. More precisely, equation (7) generalizes that law 

to anisotropic situations or equivalently to a permeability tensor, 

  
 

 
                  (7) 

We have introduced the fluid proper viscosity  related to the conductance by a 

relationship of the type   
 

 
. In the simpler situation of a homogeneous system 

(constant pore density) and isotropic that is,                   
   

 
, we 

get the more suggestive expression of the permeability, 

  
    

 
              (8) 

In a disordered medium, the isotropic assumption is certainly natural in the 

absence of external stresses applied to the solid matrix, but a mechanical 

deformation of the medium can affect the correlation matrix. Such a more general 
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situation will not be addressed in the present paper. The most obvious conclusion 

to be drawn from our study is the following: our statistical approach leads rather 

naturally to Darcy’s law generalized to inhomogeneous and anisotropic situations. 

It also predicts the dependence of the permeability upon the internal features of 

the medium (network connectivity, pores density, anisotropy due to the shape of 

the pores, …). 

 

3. Filling dynamics: probabilistic approach. Analogy with fermions 

The last section emphasized the importance of the filling dynamics (eq. 

3,4). Nevertheless, the treatment of fluid transport through a porous structure as 

presented in the previous section, is not the general situation. It was assumed that 

the conductances were almost constant with a symmetrical conductance matrix. 

These simplifications are not realistic for a porous structure filled with an 

incompressible fluid. The fluid transfer between neighboring pores will depend on 

their filling state: fluid transfer to a saturated pore will not occur. To understand 

the dependence of the transport coefficient upon the filling variables, a more 

detailed analysis of the processes involved in fluid transport is required.  

As both deterministic and stochastic processes (because of disorder) are 

present, a probabilistic approach is relevant. Let         be the probability for the 

pore number i to be filled (busy) at any time t and                   the 

corresponding probability for emptiness. These probabilities are associated with a 

set of two-valued random variable      or 1. The average values of these 

variables are then                                   . It follows from 
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that result that the filling variables                       can be identified 

to these probabilities. Their evolution proceeds from the master-equation 

governing the evolution of these probabilities, which reads, 

        

  
                                                        (9) 

The coefficients 
ij give the probability per unit time for the fluid to be transferred 

from pore i to j. As stated previously, these symbols are not symmetric, because 

depending on the pressure difference between pores i and j. These symbols 

comprise two contributions, 

       
                         (10) 

The first one    
     

  does not depend on the pressure difference and accounts 

for a spontaneous fluid transfer in the absence of an external pressure gradient 

(diffusion). The second one, non-symmetrical, is determined by the coefficients 

    (resp.    ) which should be non-zero only when       (resp.      ) so that 

it can be written               (resp.          ) where  is the 

Heaviside function. This term introduces a very complex non-linearity in the 

model. Inserting this decomposition into eq. (9) yields the filling factor dynamics, 

      

  
     

                                                 (11) 

Comparing this equation to eq. (3) leads to the identification:  

                                      (12) 

We are thus led to effective conductances depending on the pores filling states. 

For an empty network (    ) these conductances are naturally vanishing. For 

pores saturated with the fluid, we also obtain zero, which agrees with the expected 
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behavior of an incompressible fluid. For a uniform filling (< 1), we recover 

equation (3), with conductance dominated by its antisymmetric part. It can be 

easily shown from equation (11), that the first contribution to the filing dynamics 

is a diffusive process of the filling factor with a diffusion constant which reads 

        
 

 
 

Though more difficult to obtain, the most interesting consequences regards the 

second contribution. The equivalent continuum description of the discrete 

formulation defined by equation (11) can be obtained by introducing the average 

pore density               
                 (see section 2) and integrating over an arbitrary 

domain D. It should be noticed that this continuum description is not the 

continuum limit of our discrete model, which would be valid only in the limit of 

high pore densities. Our equivalent continuum description amounts to the 

introduction of regular functions  (filling) and p (pressure) which coincides with 

our variables when evaluated on the pores. We will present here only the result of 

that delicate procedure. We obtain, 

  

  
     

 

 
                                        

                                                          (13) 

The brackets mean an average of the quantities over the directions . This 

equation can be regarded as the manifestation of the complexity of porous 

systems. It also illustrates the importance of the coupling between the filling and 

the pressure dynamics. Apart from that coupling, the main signature of the 

complexity relies on the filling space-correlations             , restricted to 
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neighboring pores: these nearest neighbors filling correlations are a manifestation 

of short-range order in the network. For higher pores separation (low density), the 

filling states are statistically uncorrelated. This issue is rarely addressed in usual 

models of porous media. These correlation functions can be expanded as, 

                   
 

 
                               (14) 

This expansion generates non-trivial filling/pressure coupling (gradient coupling, 

Laplacian coupling, …) in equation (13). This interesting consequence of the 

model will be analyzed further in next studies because of its potential importance 

in some applications (industrial or biological). Dropping these complex 

corrections, the simplest model we are led to is described by the equation, 

  

  
     

 

 
                              (15) 

Inserting in equation (15) the effective fluid density,                  , 

proportional to the porosity and the number of pores we get an effective current, 

    

  
         

 

 
                      (16) 

Identifying     , this last equation becomes, 

    

  
                        (17) 

This is a generalized Darcy law incorporating the effect of filling diffusion. For 

uniform filling (no diffusion) we recover, up to a constant factor depending on the 

filling factor, its usual form. This equation leads also to equilibrium 

configurations (vanishing current) characterized by the condition, 

 

 
  

   

 
   

 

   
                                             (18) 
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This condition is equivalent to a condition of constant chemical potential [13] 

throughout the medium. The equilibrium filling factor (at any point) finally reads, 

  
 

      
        

    
 
           (19) 

It can be regarded as a (local) state equation. The filling parameter adopts a 

remarkable form: it behaves as a Fermi-Dirac function [13]. The threshold 

pressure p* is imposed by the constant value in (18) and the network features. The 

dual filling     (emptiness) is mathematically equivalent to a filling associated 

with the pressure reversal (  ( *)  ( *)p p p p  ): The pores fullness and emptiness 

are thus related by a discrete transformation similar to that connecting particles 

and holes in quantum theory [13]. This connection will be referred to as duality 

symmetry. Indeed, the transformation                     preserves 

the dynamical equation (15). As the pressure reversal is equivalent to the Darcy 

velocity field reversal, this symmetry shouldn’t be confused with the usual time 

reversal invariance (which is not obeyed by (15) as a diffusion equation). Further 

studies to explore the richness of that model are actually in progress, especially in 

order to build up a possible framework of thermodynamics of such complex 

media incorporating their topological features and the influence of external 

deformations on the flow properties.  

 

4. Applications 

In the present section, we will discuss potential applications of our 

approach of porous media to different situations, fundamental or practical. 
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Lubricating films [14] flowing between rough solids in contact is a practical 

situation encountered in many industrial applications. The fluid is inserted into the 

voids separating the contacting solids (boundary lubrication). In the relevant case 

of the so-called mixed regime, the interface resembles clearly a disordered porous 

structure with a low thickness (quasi 2D film). The mixed regime is of special 

importance in industrial applications since it corresponds, according to the 

Stribeck plot [15], to a low friction coefficient. In that field, many issues remain 

unanswered or fuzzy. Our approach can help assessing the friction coefficient 

through its connection with the filling parameter variations over the interface, as 

well as the fluid volume trapped between the solids. This last parameter is related 

to the fluid film thickness, which partly determines the flowing regime.  

On the fundamental side, another problem of peculiar interest for our group, 

regards intracranial dynamics and its pathologies [17]. This difficult problem has 

been tackled in many ways, as can be noticed in the available literature [18,19]. 

But these studies have always to face the unbelievable complexity of the 

intracranial system, complexity with both structural and functional sides. An 

important question regards the description of the brain deformation dynamics, 

coupled to the intracranial fluids (cerebrospinal fluid (CSF) and blood dynamics), 

and its influence on the overall intracranial dynamics. More especially, that 

knowledge would shed light on the mechanism of related pathologies such as 

hydrocephalus [17,20,21]. This pathology is often depicted as a disorder of CSF 

hydrodynamics. The peripheral zones of brain are known to absorb partly CSF: 

brain matter acts then as a porous visco-elastic structure [17]. CSF diffusion 
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through brain matter can be approached with our model to assess CSF pressure 

within. But contrary to solids, brain is an easily deformable medium, and this 

affects deeply the CSF flowing regime (strong coupling). More especially, due to 

arterial blood pulses, the CSF pressure is modulated, resulting in dynamical flows 

of the Womersley type. We can thus expect that this application should generate 

new interesting features in the field and improve the ability of our model to 

account for the elastic properties of the solid matrix. 

 

Conclusion 

We have proposed a new theoretical way to tackle the complexity of 

porous media incorporating many of their features such as disorder effects, 

topology of the pores network, flowing regimes of the trapped fluid. Based on a 

discrete stochastic description of the network, it leads to an effective continuum 

description derived from the “microscopic” equation through a straightforward 

procedure. The most fundamental consequences of the model regard the 

emergence of Darcy’s law and its connection to the network topology and 

disorder of the pores system and on the other side, the prediction of full/empty 

pores duality symmetry arising from the coupling between the pores filling 

dynamics and the pressure dynamics. A typical signature of that coupling is the 

prediction of steady out of equilibrium filling states and its dependence upon 

pressure which appears to follow a Fermi-Dirac type law. Application of this 

stochastic approach to fundamental or industrial problems involving porous media 
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comprising a fluid component is considered, having in view to shed new light on 

these problems and improve the model. 
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Figures 

 

Figure 1. Typical geometry of a disordered porous network with an open 

topology. That structure is encoded by a graph with the pores as summits 

connected by links associated with conductances ij.  

 


