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Abstract

This article is the first of its kind that treats hat stiffened panel in reliability based optimization
(RBO). This panel is used in aerospace and marine structure. Along RBO, a deterministic op-
timization of this panel is performed. These optimization methods are based on a polynomial
metamodel. Panel optimization aims to maximize its rigidity and minimize its weight. The vari-
ables vector contains the panel geometric dimensions. Uniform distributions are associated to
geometric variables and materials densities of the panel. The results of these two optimization
types are compared to show the influence of inputs uncertainties on the optimum design. RBO
is performed using two methods; The first being a combination of Monte-Carlo simulation to
propagate uncertainty and NSGA2 to find optimum points. The second uses analytic calcula-
tion to propagate uncertainty and bi-objective Normal boundary intersection to find the Pareto
front. The latter outperforms the first and produces an exact Pareto front with a better execution
time.

Keywords: hat stiffened panel / reliability based optimization / NBI / NSGA2
/analytic calculation.

1 Introduction
In recent years, optimization under uncertainty has widely evolved. This type of optimization
is highly demanded in mechanical engineering. This demand is due to the irreducible pres-
ence of uncertainties sources like manufacturing tolerances, materials properties, temperature,
humidity, etc. This optimization type incorporates two different approaches: Reliability based
optimization [1] and Robust optimization (RO) [2]. The RBO results are more reliable, while
those of RO are less sensible to inputs variations.

Composite panels are widely employed in manufacturing. The hat stiffened panel is used in
aerospace and marine constructions. (Fig. 1) [4] shows an application of this panel in Boein
787. These applications require a high level of reliability. In this paper a RBO is applied to
a hat stiffened panel that was studied in [3] with deterministic optimization. This article is
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Figure 1: Application of hat stiffened panel in fuselage Boeing 787

the first work that studies RBO of a hat stiffened panel. Here, the Pareto front is computed
by maximizing the panel’s rigidity and minimizing its weight. The problem is formulated as
follows. The variables are defined as the panel geometric dimensions. At first, a polynomial
metamodel is constructed to replace the rigidity function. In a second place, a deterministic
optimization and RBO are performed. RBO is realized in two methods: the first being the
combination of Monte-Carlo (MC) simulations for uncertainty propagation and NSGA2 [5]
as optimization algorithm. The second being the combination of analytic calculation (AC)
to propagate uncertainty and Normal boundary intersection (NBI) [6] to construct the Pareto
front. The inputs uncertainties are associated to the problem variables and materials densities
of the panel. The results of these methods are compared and the advantages of each method
are identified.

2 Panel and case study

2.1 Panel properties and geometry
The studied panel here was proposed by Rifay et al. in [4], who developed a new procedure to
produce composite plates of size 400×140×3 mm3 reinforced with a centrally located Omega
feature. The sandwich hat-stiffened composite panel consists of three components: an upper
composite layer, a lower composite layer, and a foam core separating them. (Fig. 2.a) [3] shows
a illustration of the described layers.

The geometric parameters of this panel are presented in (Fig. 2.b) [3]. The core is made of
Foam which has the following properties (E = 1.5GPa; ν = 0.3 ). The composite parts are
made of glass fiber-epoxy. The ply lay-up is [90, 0, 90] with a total number of 3 plies, each
having a thickness of 0.47mm.

2.2 Case study
According to experimental results in [4], this composite panel will act as an elastic one while
the bending force is below 2000N. The hat stiffened panel is treated in omega case where a
constant force F = 1000N is applied on the mid plane of upper layer, and two supports are
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(a) (b)

Figure 2: a) Panel composition , b) Panel geometry.

Figure 3: Omega loading.

placed in the opposite layer. Their inter distance is 209mm as shown in (Fig. 3)[3]. (Table 1)
shows the upper and lower bounds of variables vector. The mean vector of these bounds is very
close to the dimensions of the experimental panel studed in [4]. The choice of these bounds in
addition to the constant force F = 1000N ensures that we are still in the elastic region while
the geometric parameters vary between variables bounds.

3 Optimization problem

This work aims at finding the best geometrical composition that maximizes the panel’s rigidity
with minimum weight. Let the geometrical variables vector be x = {c, d, e, f, g, h}, whose
bounds are presented in (table 1). The parameters a and b are fixed to 406.4mm and 104.34mm

respectively, while i is supposed to be equal to g as shown in (Fig. 2.b). The rigidity functionR
is presented in (1) where δ is the maximum panel deflection. The mass functionM is obtained
by (2), where Vc, Vf are the total volumes of composite parts and foam part respectively, andρc,

Table 1: Upper and lower bounds for variables vector

Variables c d e f g h
Lower bound xl[mm] 234 44 200 18 1.24 11.4

Upper bound xu[mm] 266 52 249 26 1.56 14.6
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ρf are their corresponding densities.

R =
F

δ
(1)

M = Vcρc + Vfρf (2)

3.1 Deterministic optimization
The deterministic problem is formulated in (3) as follows. Let Fobj be the objective functions
vector, and xl, xu be the lower and upper variables vectors respectively. The minimum value
of the rigidity is assumed to be equal to 600Nmm−1. This value in addition to the geometric
constraint ensure the elastic behavior of the panel.

Minimize Fobj(M(x),−R(x)),
Subject to :

R(x) ≥ 600

xl < x < xu

(3)

3.2 Metamodeling
The calculation of the deflection using finite element simulation is exhaustive. In order to
overcome this problem, a polynomial metamodel is constructed. The polynomial metamodel
gives access to propagate uncertainty by analytic calculation. To construct this metamodel, 85
experiments are realized using ANSYS™. These 85 points are chosen using cubic face centered
design of experiments. The obtained metamodel is shown in (4).

R = −130 + 82.3g + 0.3732dh+ 0.3275dgh+ 0.04731fgh2 − 0.1517e− 0.05446d2 (4)

3.3 Reliability based optimization
Deterministic optimization produces results that are sensible to inputs variations and have a low
reliability degree. In order to avoid this issue, the problem is studied under uncertainty with
RBO formulation. The RBO aims to obtain optimums that respect the problem constraints
with high reliability degree. Uniform distributions are associated to the problem variables and
parameters. The parameters of these distributions are presented in (table 2), where x is the
variables vector and ρ = {ρc, ρf} is the densities vector . The objective functions in RBO are
the mean of the mass E[M ], and the mean of the rigidity E[R]. The deterministic constraint
is replaced by its quantile function Qk[R] with a reliability degree equal to k. The RBO is
formulated in (5), where X and P are the vectors of random variables and random densities
respectively.
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Table 2: Uniform distribution parameters associated to each variable or parameter of the prob-
lem.

Variables and parameters x ρ

Lower bound [mm] 0.97x 0.95ρ

Upper bound [mm] 1.03x 1.05ρ

Minimize Fobj(E[M(X,P )], E[−R(X)])

Subject to :

Qk[−R(X)] ≤ −600
X = x+ χx

P = ρ+ χρ

xl < x < xu

x = {d, e, f, g, h}

(5)

3.4 Optimization methods
To solve the RBO problem we adopte two different methods. The first is the combination of
MC and NSGA2. Latin hypercube sampling (LHS) and common random number (CRN) [7]
are used in MC with a sampling number n = 106 samples. For NSGA2, population the size is
taken 70.

The second method is the combination of AC and NBI. The mean E[g] and the standard devia-
tion σ[g] of a function g(X) using AC are calculated by (6), whereX is the variables vector, n
is the number of variables, and fi(xi) the probability density function of the random variable
xi.

In order to show the distribution of [−R(X)], a large number of MC simulations containing
105 samples per simulation was executed. (Fig. 4) illustrates a sample of the obtained distribu-
tions. These distributions are found to be very close to normal distributions . This allows the
estimation the quantile of rigidity using the equation of normal distribution defined in (7). The
function φ−1(k) is the inverse of cumulative distribution function of standard normal distribu-
tion corresponding to a probability k.

E[g(X)] =

∫ +∞

−∞
..

∫ +∞

−∞
g(X)

n∏
i=1

fi(xi)dxi

V ar[g(X)] =E[g2(X)]− E2[g(X)]

E[g2(X)] =

∫ +∞

−∞
..

∫ +∞

−∞
g2(X)

n∏
i=1

fi(xi)dxi

σ[g(X)] =
√
V ar[g(X)]

X ={x1, x2, .., xn}

(6)
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Figure 4: Distribution of [−R]

Table 3: Time and number of iterations consumed by NBI-AC, NSGA2-MC methods and de-
terministic optimization.

Method Time Number of
iterations

NSGA2-MC 3400 s 7981

NBI-AC 18.6 s 21491

Deterministic 22.2 s 24646

Q̂k[−R(X)] = E[−R(X)] + φ−1(k)σ[−R(X)] (7)

4 Optimization results
The problem is studied in deterministic and RBO cases. (Fig 5) shows the results of these cases.
The RBO is evaluated using two reliability degrees 85% and 99.998%. The three obtained
Pareto fronts are constructed using NBI where each one contains 25 points. The deterministic
front covers a larger domain than the two RBO fronts. The RBO front that corresponds to 85%
is larger than the one with reliability degree equal to 99.998%.
(Fig 6) compares the results of NBI-AC and NSGA2-MC indicating a dominance of NBI-
AC. This dominance appears in the entire points of Pareto front. The results of NBI-AC are
equally distributed along the entire front, whereas NSGA2-MC aren’t. The time consumed and
the number of iterations taken by each method are shown in (table 3). NBI-AC is faster than
NSGA2-MC although its number of iterations is higher. It is worth noting that the execution
time of NBI-AC is competitive to that of deterministic case.
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Figure 5: Comparison between deterministic and RBO Pareto fronts
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Figure 6: RBO Pareto fronts constructed by NBI and NSGA2 with reliability = 85%
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5 Conclusions and Perspectives
In this work, an efficient NBI-AC method to solve RBO of a hat stiffened panel was described.
This method is the combination of AC to propagate uncertainty and NBI to construct Pareto
front. The results of this method are noted in the following. The hat stiffened panel problem
should be treated in RBO, due to the influence of uncertainties in the deterministic case. Yet, the
RBO results depend on the chosen degree of reliability. Moreover, the time required to compute
the RBO is related to the applied method. It is found that NBI-AC requires a competitive time
to that in the deterministic case. In addition, it produces an exact and equally distributed Pareto
front. Whereas NSGA2-MC doesn’t converge to the exact front and takes more time to reach
it. The number of iterations in NBI is higher than that in NSGA2 due to the equality constraint
used in the former method. This method can be applied to other problems especially when
the Pareto front is convex. In the case of concavity of Pareto fronts, NBI can be replaced by
Adaptive weighted sum (AWS) [8], that is more computationally complex. RO optimization is
needed to evaluate the stability of the obtained results, however this will increase the complexity
of the problem due to the addition of mass and rigidity standard deviations objective functions.
In this case a multi-objective NBI function could be used [9].
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