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Résumé :
À l’heure actuelle, l’atténuation des ondes acoustiques et des vibrations mécaniques en moyennes et
hautes fréquences est bien connue et facilement réalisable, en particulier avec des matériaux dissipa-
tifs. Cependant, cette atténuation est beaucoup plus difficile à réaliser en basses fréquences en raison
des grandes longueurs d’onde. Dans le travail présenté ici, nous proposons de réduire et les vibrations
en basses fréquences sur une large bande de fréquences au moyen d’absorbeurs non-linéaires permet-
tant un transfert et une dissipation de l’énergie. A terme, l’objectif est de répartir aléatoirement de
tels absorbeurs non linéaires dans une matrice pour atténuer les ondes acoustiques et les vibrations.
L’absorbeur se compose d’une poutre console avec une masse à son extrémité. Il est conçu pour obte-
nir un comportement dynamique non-linéaire en basses fréquences grâce aux déplacements finis de la
poutre. Ce système mécanique est modélisé par un système masse-ressort-amortisseur avec une rigidité
et un amortissement non-linéaires. En effet, la non-linéarité permet une atténuation sur une bande de
fréquence plus large, contrairement aux systèmes linéaires qui ne génèrent qu’une réduction sur une
bande de fréquences étroite autour de la résonance, ce qui permet de réduire le nombre d’absorbeurs
nécessaires pour une atténuation donnée. Nous allons d’abord présenter la conception de l’absorbeur
non-linéaire optimisé en utilisant une modélisation stochastique afin d’obtenir la réponse non-linéaire
la plus forte possible. Ensuite, les résultats expérimentaux seront présentés ainsi que ceux obtenus à
partir du modèle proposé pour l’absorbeur.

Abstract :

At the present time, the attenuation of acoustic waves and mechanical vibrations at high and middle
frequencies is well known and easily done, especially with dissipative materials. However, this attenua-
tion is much more difficult to realize at low frequencies because of the large wavelengths. In the work
presented here, we propose to reduce the vibration at low frequencies over a broad frequency band by
means of nonlinear absorbers allowing a transfer and a dissipation of the energy. Ultimately, the ob-
jective is to randomly distribute such non-linear absorbers in a matrix to attenuate acoustic waves and
vibrations. The absorber consists of a cantilever beam with a mass at its end. It is designed in order to
obtain a nonlinear dynamical behavior at low frequencies due to the finite displacements of the beam.
This mechanical system is modeled by a mass-spring-damper system with a nonlinear stiffness and a
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nonlinear damping. Indeed, nonlinearity allows attenuation over a broader frequency band, than for
linear systems for which the reduction only works on a narrow frequency band around the resonance,
reducing the number of absorbers needed for a given attenuation . We will first present the design of the
nonlinear absorber optimized using stochastic modeling in order to obtain the strongest nonlinear res-
ponse possible. Then, experimental results will be presented as well as those obtained by the proposed
model of the absorber.

Keywords : vibrations attenuation, nonlinear absorber, homogeneization,me-
tamaterial

1 Introduction
As it is well known, the reduction of acoustic waves and vibration at middle and high frequencies is
mainly done by dissipative materials. With these materials, waves are reduced thanks to the pores of the
materials. However, for low frequencies, the wavelength are larger that the pores, and dissipative ma-
terials are less efficient. To get around this problem at low frequencies, absorbers have been designed,
in particular oscillators. Among the first papers devoted to the enery pumping by simple oscillators, the
work by Frahm [1] in 1911 can be cited. The author proposed the idea of adding an auxiliary body to a
structure to reduce or avoid vibration due to periodic impacts. The resonance vibration of the main body
is annulled by the secondary resonance vibration of the smaller auxiliary body. In nearer years, tuned
mass dampers have been studied. The principle is to add an oscillator (generally a mass-spring-damper
system) to amain structure with a problematic resonance. The resonance frequency of the damper is ajus-
ted in order to be the same as the structure’s to attenuate the resonance. With that, the peak is divided
into two peaks of low amplitudes. A review made by Gutierrez Soto et al. [2] presents a representative
research on tuned mass dampers. Metamaterials have also been used for the reduction of noise and vibra-
tion. A metamaterial is a material with properties that can not be find in nature, generally a composite.
There are for instance materials with both negative permittivity and negative permeability in optics [3].
In the field of absorption of vibration and noise, numerous papers have been published with metamate-
rials, as for instance, [4, 5, 6, 7, 8, 9, 10, 11]. In 1952, Roberson [12] have presented the equations of a
nonlinear dynamic vibration absorber and highlighted the fact that an auxiliary body with nonlinear dy-
namical behavior offers significant advantages over a linear absorber. This was confirmed by Soize [13]
in 1995 that the transfer of the energy is done over a broader frequency band with a nonlinear auxiliary
body than a linear one. Concerning the energy pumping by nonlinear mechanical oscillators in order to
attenuate vibration for discrete or continuous systems at macro- or at micro-scales, many works have
been published such as [14, 15, 16, 17, 18, 19, 20, 21].

This paper is devoted to the reduction of vibration in structures at macro-scale for low frequencies for
which the first structural modes are excited. The final objective of this work is to reduce vibration on a
broad low-frequency band by using a microstructured material by inclusions that are randomly arranged
in the material matrix. The first step of this work is to design and to analyze the efficiency of an inclu-
sion, which is made up of a cantilever beam with a mass at its end. This inclusion behaves as a nonlinear
oscillator which designed so that the energy pumping is effective on a broad frequency band around its
resonance instead of a narrow frequency band as for a linear oscillator. For this first step, the objective
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is to develop the simplest mechanical model that has the capability to roughly predict the experimental
results. The second step will consist in developing a more advanced nonlinear dynamical system. In
this paper, devoted to the first step, it is proved that the nonlinearity induced an attenuation on a broad
frequency band around its resonance, whereas the associated linear system applies a reduction only on
a narrow frequency band. We will present the design of the inclusion in terms of form, dimension and
materials, the experimental manufacturing of this system realized with a 3D printing system, and the
experimental measurements that have been performed. The prevision given by the stochastic computa-
tional model are compared to the measurements. The results obtained exhibit the physical attenuation
over a broad low-frequency band, which were expected.

In Section 2, the model of the inclusion and the related stochastic solver are introduced. Then, the experi-
mental design is presented in Section 3 as well as the experimental measurements and the identification
of the model. In Section 4, the conclusions on the results of this work and the perspectives of the future
work are given.

2 Design of the nonlinear model and stochastic solver

2.1 Model of the inclusion
As explained in Section 1, a nonlinear oscillator with one DOF is proposed to model the nonlinear
dynamical behavior of the inclusion. The one-DOF nonlinear model is composed of a mass-spring-
damper system with a nonlinear spring and a nonlinear damping, subjected to base excitation (see
the scheme displayed in Figure 1). Let Xexp

imp(t) be the displacement imposed at the base in the abso-
lute frame and let Xs(t) be the relative displacement of the point mass with respect to the base. Let

m

Xs(t)

Xexp
imp(t)

F exp
s (t)

fK(Xs(t)) fD(Xs(t), Ẋs(t))

Figure 1 – 1D simplified model.

{Ẍexp
imp(t), t ∈ R} be the acceleration imposed to the base, which is a Gaussian stationary second-

order centered stochastic process, defined on the probability space (Θ, T ,P), for which the power
spectral density function is denoted by SẌexp

imp
(ω). We aim to find the stationary second-order stochas-

tic solution {Xs(t), t ∈ R} (which is not Gaussian) of the following stochastic nonlinear equation
m(Ẍs(t) + Ẍexp

imp(t)) + fD(Xs(t), Ẋs(t)) + fK(Xs(t)) = 0 for t in R, which is rewritten as

mẌs(t) + fD(Xs(t), Ẋs(t)) + fK(Xs(t)) = F exp
s (t), t ∈ R, (1)
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with

F exp
s (t) = −mẌexp

imp(t) ,

fD(Xs(t), Ẋs(t)) =
(
c1 + c2|Xs(t)|

)
Ẋs(t) ,

fK(Xs(t)) = k1Xs(t) + k3(Xs(t))
3 ,

where m is the mass of the inclusion introduced before, c1 and c2 are the damping coefficients and k1
and k3 are the stiffness coefficients. The nonlinear stiffness is written as a cubic nonlinearity because it
is the form of nonlinearity due to geometric effects that can be observed experimentally in our case. We
did not add quadratic coefficient in order to obtain a centered response as the excitation is a centered
stochastic process.

The mean input power Πin = E{F exp
s (t) Ẋs(t)} (in which E is the mathematical expectation) and the

mean power dissipated Πdiss = E{fD(Xs(t), Ẋs(t))Ẋs(t)}, which are independent of t and which are
equal (due to the stationarity), can be written as Πin =

∫
R πin(ω) dω and Πdiss =

∫
R πdiss(ω) dω, in which

the density πin(ω) and πdiss(ω) are such that

πin(ω) = SF exp
s Ẋs

(ω) , πdiss(ω) = SfDẊs(ω) . (2)

In Eq. (2), SF exp
s Ẋs

is the cross-spectral density function of the stationary stochastic processes F exp
s and

Ẋs, and SfDẊs(ω) is the cross-spectral density function of the stationary stochastic processes fD and
Ẋs. The energy pumping expressed as a function of the frequency is therefore characterized by πin(ω) =

πdiss(ω). In order to qualify the efficiency of the energy pumping as a function of the intensity of the
nonlinearity, we introduce the normalized quantity,

πin,norm(ω) =
πin(ω)

SF exp
s

(ω)
. (3)

Finally, the damping and stiffness coefficients will be experimentally identified by using the frequency
dependent function FRF2(ω) defined on B0 by,

FRF2(ω) =
|SẊsF exp

s
(ω)|2

|SF exp
s

(ω)|2
(4)

It should be noted that if fD(x) and fK(x)were linear functions of x (linear oscillator), then FRF2 would
represent the square of the modulus of the frequency response function of the associated linear filter for
which F exp

s is the input and Ẋs is the output.

2.2 Stochastic solver and signal processing
Stochastic solver. For constructing the stationary stochastic solution of the nonlinear differential equation
Eq. (1), the Monte Carlo method (see [22]) is used. Let {F exp

s (t; θ`), t ∈ R} be a realization of the
stochastic process F exp

s for θ` ∈ Θ. Considering L independent realizations, for each realization θ`, we
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then have to solve the deterministic nonlinear differential equation with initial conditions,
mẌ(t; θ`) + fD(X(t; θ`), Ẋ(t; θ`)) + fK(X(t; θ`)) = F exp

s (t; θ`), t ∈ [0, t0 + T ],

X(0, θ`) = 0, Ẋ(0, θ`) = 0.

(5)

The part {X(t; θ`), t ∈ [0, t0]} of the non-stationary random response corresponds to the transient si-
gnal induces by the initial conditions, that decreases exponentially due to the damping. This part of the
response is removed in the signal analyzing of the second-order quantities of the stationary solution.
Time t0 is chosen in order that the transient response be negligible for t ≥ t0. The part of the trajectory
corresponding to the stationary response is Xs(t; θ`) = X(t − t0; θ`) for t in [t0, t0 + T ]. The time
duration T that is related to the frequency resolution is defined after. The deterministic problem defined
by Eq. (5) will be solved with a Störmer-Verlet scheme presented after.

Time and frequency sampling. For constructing the second-order quantities of the stationary response
Xs, the signal processing requires a time sampling with a constant time step ∆t that is performed using
the Shannon theorem for the stationary stochastic processes [23]. The sampling frequency is thus writ-
ten as fe = 2 fmax where fmax is the maximal frequency and the time step is ∆t = 1/fe. The cor-
responding time sampling is tα = α∆t with α = 0, 1, ..., N − 1 in which the integer N is cho-
sen in order that the time duration is T = 8 s, where T = N∆t yielding the frequency resolution
∆f = 1/T = 0.125Hz andN = 16, 384. The corresponding sampling points in the frequency domain
are fβ = −fmax + (β + 1/2)∆f for β = 0, 1, ..., N − 1.

Generation of independent realizations of stochastic process F exp
s . The usual second-order spectral re-

presentation of the stationary stochastic processes is used [24, 25]. The power spectral density func-
tion SF exp

s
(ω) of the Gaussian stationary second-order centered stochastic process F exp

s is such that
SF exp

s
(ω) = m2 SẌexp

imp
(ω), in which SẌexp

imp
(ω) = ω4 SXexp

imp
(ω). The autocorrelation function τ 7→

RẌexp
imp

(τ) of stochastic process Ẍexp
imp is such that RẌexp

imp
(τ) = E{Ẍexp

imp(t+ τ)Ẍexp
imp(t)} and RẌexp

imp
(τ) =∫

R e
iωτSẌexp

imp
(ω) dω. The generator of realizations of the Gaussian stationary second-order stochastic

process Ẍexp
imp is based on the usual spectral representation (see [26, 27]). Let Ψ0, . . . ,ΨN−1 be N mu-

tually independent uniform random variables on [0, 1], and let φ0, . . . , φN−1 beN mutually independent
uniform random variables on [0, 2π], which are independent of Ψ0, . . . ,ΨN−1. The spectral represen-
tation used is,

Ẍexp
imp(t) '

√
2∆ω Re

{N−1∑
β=0

√
SẌexp

imp
(ωβ)Zβ e

−iωβt e−iφβ
}
, t ∈ [0, t0 + T ] , (6)

with ∆ω = 2π∆f , where Zβ =
√
− log(Ψβ) and ωβ = 2π fβ .

From Eq. (6), it can be deduced that the realization {Ẍexp
imp(t; θ`) , t ∈ [t0; t0 + T ]} is written as

Ẍexp
imp(t; θ`) '

√
2∆ω Re

{N−1∑
β=0

gβ,` e
−iωβt

}
, t ∈ [0, t0 + T ] , (7)



23ème Congrès Français de Mécanique Lille, 28 au 1er Septembre 2017

with gβ,` =
√
SẌexp

imp
(ωβ)Zβ(θ`) e

−iφβ(θ`). Introducing the FFT {ĝ0,`, . . . , ĝN−1,`} of {g0,`, . . . , gN−1,`},

which is written as ĝα,` =
∑N−1

β=0 gβ,` exp
{
− 2i π αβ/N

}
for α = 0, 1, ..., N − 1, we obtain

Ẍexp
imp(tα; θ`) =

√
2∆ω Re

{
exp

{
− iπα

(1−N
N

)}
ĝα,`

}
, α = 0, 1, . . . , N − 1 . (8)

Störmer-Verlet integration scheme. The Störmer-Verlet integration scheme is well suited for the reso-
lution of dynamical Hamiltonian systems [28, 29] as proposed, for instance, for the dissipative case in
[30]. Such a scheme preserves the mechanical energy during the numerical integration. We thus rewrite
Eq. (5) in the following dissipative Hamiltonian form as

Ẋ(t; θ`) =
1

m
Y (t; θ`), t ∈ [t0, t0 + T ] ,

Ẏ (t; θ`) = −fD(Y (t; θ`)− k1X(t; θ`)

−k3(X(t; θ`))
3 + F exp

s (t; θ`), t ∈ [t0, t0 + T ] ,

X(0; θ`) = 0 , Y (0; θ`) = 0 .

(9)

We use the notation uα` = U(tα; θ`). The Störmer-Verlet integration scheme for Eq. (9) is then written,
for α = 0, 1, ..., N − 1, as

x
α+1/2
` = xα` +

∆t

2m
yα` ,

yα+1
` = yα` + ∆t

[
−
fD(yα` ) + fD(yα+1

` )

2

−k1xα+1/2
` − k3(xα+1/2

` )3 + F exp
s (tα+1; θ`)

]
,

xα+1
` = x

α+1/2
` +

∆t

2m
yα+1
` ,

(10)

in which F exp
s (tα+1; θ`) = −mẌexp

imp(tα+1; θ`).

Signal processing. For estimating, the power spectral density functions and the cross-spectral density
functions defined in Eqs. (2) and (4), the periodogram method [23] is used.

3 Experimental design choice, measurements and identification
of the model

In Section 2, we defined the model of the inclusion and the related stochastic solver. In this section, we
want to design a experimental structure that can be assimilated to an one-DOF nonlinear oscillator.

Concerning the design of the nonlinear oscillator, we had several constraints. Indeed, the dimension
of the inclusion was set at about two centimeters, in order to be of the size of the biggest aggregates
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in concrete, supposing that the inclusion can be put in a wall of concrete. In addition, we wanted an
oscillator with a strong nonlinear behavior without important displacements to remain in the bulk define
previously. Also, we needed an oscillator with a weak damping to absorb the energy on a broad frequency
band. After tests on different structures (these tests will be develop in a future paper), we chose to focus
on a cantilever beam with a mass at its end.

3.1 Presentation of the test structure
The inclusion has been designed at a macro-scale ans this inclusion is manufactured using a 3D printing
system. The material of the inclusion and of the frame is in ABS , which is commonly used as a material
for 3D printing. It is made up of a mass constituted of a cube, embedded at the end of a beam. The other
end of the beam is integral with the frame. The beam length is 0.026m and its square section is 0.001×
0.001m2. The exterior dimensions of the cube are 0.008×0.008×0.008m3. Themassm of the inclusion

(a) CAO (b) 3D printing

Figure 2 – CAO and 3D printing of the test structure.

is approximated by the sum of the mass of the accelerometer attached to it for the measurements, that
is 0.4 g, the mass of its cable 0.2 g and the mass of the cube 0.55 g, so the mass m is 1.2 g (the mass
of the beam is neglected). The mass density of the ABS is 1, 780 kg/m3. Some experimental traction
tests have been carried out to identify the mechanical properties of the ABS material. The experiments
give for the Young modulus, 2.2× 109 Pa and for the Poisson coefficient 0.35. This inclusion has been
designed so that the first eigenfrequency of the frame be around 1, 200Hz and the first eigenfrequency
of the inclusion (point mass, accelerometer and beam) around 24Hz. We are interested in analyzing
the stationary random response of the inclusion in the frequency band of analysis Ba = [0, fmax] with
fmax = 1, 024Hz, induced by the stationary random excitation of the embedded end of the beam. The
acceleration of the base of the beam is equal to the acceleration imposed to the frame (considered as
rigid in the frequency band), on which a stationary random external force is applied (see Section 3). The
observed frequency band is the band Bo = [21, 26]Hz, which contains the resonance frequency for all
the amplitudes of the excitation.

3.2 Experimental results and identification of the model
The experimental configuration can be viewed in Figure 3. The acceleration Ẍexp

imp at a point of the rigid
frame fixed to the shaker and the acceleration Ẍexp

S of the mass (inclusion) are measured by two acce-
lerometers. The excitation applied to the rigid frame is done by a shaker. The experimental responses
have been measured for seven amplitude levels of the acceleration Ẍexp

imp. These cases are identified by
the ratio d/h where h is the thickness of the beam ( h = 0.001m) and d is defined as the mean of the “
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Figure 3 – The experimental configuration.

peak-to-peak” deflection amplitudes obtained for each measurement block :

d =
100

2L

( L∑
`=1

max(Xexp(t; θ`))−
L∑
`=1

min(Xexp(t; θ`))
)
.

For instance, if d/h = 100%, the displacement of the inclusion is of the order of magnitude of the
thickness of the beam. The power spectral density function of the force applied to the oscillator SF exp

s
is

displayed in Figure 4 for each case and for the frequency band Bo.
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Figure 4 – Experimental PSD function SexpFx
for seven amplitudes of the excitation.

As explained in Section 2.1, for all amplitudes, the experimental identification of the damping and stiff-
ness parameters is performed by minimizing over the frequency band Bo, the distance between the
function FRF2 (Eq. (5)) computed with the model and with the experimental measurements.
During the identification process, we have noted that the damping of the systemwas nonlinear. According
to [31], the form chosen tomodel the damping in order to keep a centered response is fD(Xs(t), Ẋs(t)) =(
c1 + c2|Xs(t)|

)
Ẋs(t). The experimental identification gives for the stiffness and damping coefficients

k1 = 26.8N/m ,

k3 = −4× 106N/m3 ,

c1 = 0.0038Ns/m ,

c2 = 10Ns/m2 .

(11)
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For each of the seven amplitudes, Figure 5 displays the functions FRF2 obtained by the identified model
and experimentally. It can be seen a reasonable agreement between the experiments and the computation,
knowing that an approximation has been introduced for constructing the model (see the explanations
given in Section 2.1).
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Figure 5 – Functions FRF2 obtained experimentally and with the identified model for the seven ampli-
tudes of excitation.

Figure 6 displays the experimental and numerical normalized input power density defined by Eq. (3) for
seven amplitudes of excitation. A reasonable agreement can also be seen between the model prediction
and the experiments. Furthermore, the results presented in this figure confirm a strong effect of the
nonlinearity that allows the pumping energy phenomenon to be efficient over a broader frequency band
around the resonance frequency than for the linear case, which was the objective of this study.

4 Conclusions
In this paper, we have presented the results related to the first step of a work devoted to the design and
the analysis of a nonlinear microstructured material to reduce vibrations at low frequencies. We have
designed an inclusion at macroscale, which has been manufactured with a 3D printing system. The di-
mension of this inclusion can easily be reduced with the same technology. A nonlinear dynamical model
has been developed and its parameters have been identified with the experiments. Both the predictions
given by the model and the experiments confirm that the pumping energy phenomenon is more efficient
over a broader frequency band around the resonance frequency than for the linear case. The work in
progress is the use of absorbers based on such a technologies for analyzing the attenuation of acoustics
waves and vibrations in materials.
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Figure 6 – Normalized input power density πexpin,norm obtained experimentally and with the identified
model for the seven amplitudes of excitation.
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