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Résumé :

La nature et les nombreuses caractéristiques remarquables des gels polymériques expliquent leur uti-
lisation de plus en plus répandue comme biomatériaux en médecine régénératrice et en ingénierie
tissulaire. Eu égard à leur biocompatibilité, leur déformabilité et leur grande capacité d’absorption de
solvants, ces biomatériaux sont souvent sélectionnés en raison, notamment, de leurs propriétés méca-
niques modulables et surtout proches de celles des tissus biologiques mous. Ce travail se propose d’étu-
dier le comportement global de gels polymériques à l’intérieur desquels des microvides sont présents.
Une tentative est mise en œuvre pour l’obtention d’une approximation des réponses macroscopiques de
ces biomatériaux à des chargements proportionnels imposés. Dans cette perspective, la méthode d’ho-
mogénéisation à deux échelles proposée utilise un Volume Élémentaire Représentatif (VER) consitant
en un simple cylindre axisymétrique constitué d’une matrice homogène imbibée de solvent et d’un
vide sphérique en son centre. Les trajets de chargement imposés aux surfaces extérieures du VER sont
tels que la triaxialité macroscopique est maintenue constante. Dans cette communication, les courbes
contraintes-déformations macroscopiques, l’influence de la valeur de la porosité initiale, et celle de la
triaxialité prescrite sont mises en évidence pour des valeurs fixées de la concentration du solvent et du
paramètre d’interaction de Flory-Huggins.

Abstract :

The nature and the large notable distinguishing features of polymeric gels explain their pervasive use
as biomaterials in both regenerative medicine and tissue engineering. With regard to their biocompati-
bility, their ability to withstand large deformation and their significant capacity of solvent absorption,
these biomaterials are often selected owing to their versatile mechanical properties and especially the
closeness to soft biological tissues, amongst others. The present work is undertaken in order to examine
the overall behaviour of polymeric gels where microvoids are present. An attempt is made towards ob-
taining an estimation of their macroscopic responses to prescribed proportional loadings. To this end, a
two-level representation of the material at hand for which the Representative Volume Element (RVE)
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imbibed with a solvent is a simple axisymmetric cylinder composed of a homogeneous matrix surroun-
ding a spherical void, is considered. The computational study addresses the situation where the RVE
is subjected to prescribed axial and lateral overall stresses under conditions of constant overall stress
triaxiality. In this communication, for fixed values of the Flory-Huggins parameter and the nominal
concentration of the solvent, the overall stress-strain behaviour of the RVE model, the influence of the
initial porosity, and the prescribed stress triaxiality ratio have been emphasized.

Mots clefs : gels ; hyperelasticity ; microvoid growth ; multiscale simu-
lation ; polymeric biomaterials ; porosity ; swelling.

1 Introduction

Hydrogels are pervasive in biology and have been turned out to be nearly optimal for in-

terfacing with dynamic systems. By way of illustration, they are used as biomaterials in

order to enhance stem cell transplantation by addressing, in particular, the mechanical as-

pects associated with each stage of the transplantation process [2, 12]. The characteristic

soft ability of these polymeric biomaterials makes them strongly resembling the extracellular

matrix (ECM) which encapsulates cells in their native environment. Regarding tissue engi-

neering, scaffolds made of hydrogels, just like ECM, act as a structural support and are able

to accommodate biomechanical signals to control cell function and eventually their fate [9].

Nowadays, it is trite to claim that stem cells are known to respond to mechanical cues in

their microenvironment by changing their morphology, dynamics, proliferation rate, migra-

tion speed, and differentiation potential [19, 7]. The physical process of mechanosensitivity

is realized through the contact and adhesion between cells and their microenvironment [1].

Hydrogels, a cross-linked polymers immersed in a solvent (water), are an interesting class of

materials that are able to undergo significantly large deformation which can also be trigge-

red by external stimuli through appropriate change of constituents [18]. Solvent molecules

migrate in a gel by self-diffusion. When hydrogels are subjected to mechanical loadings or

also when the chemical potential of the environment changes, the polymer chain network

deforms and the solvent molecules migrate to reach the thermodynamic equilibrium [20].

This equilibrium is reached as soon as the chemical potential of the solvent equals to that

in the external solution. The mechanical, thermodynamic and kinetic properties of various

environmentally sensitive hydrogels have been modeled and analyzed to study the different

interesting phenomena exhibited, namely the phase transition and instability during swel-

ling [14, 6, 3].

On the other hand, poor toughness of soft porous biomaterials may results in failure which is

an issue of importance to both engineering and medical practice [16, 25, 4]. An understanding

of failure mechanisms turns out to be crucial in the study of fracture of these biomaterials.

Under sufficient loading, microvoids can be triggered inside materials as diverse as poly-

mers, biological tissues, polymers, and even nominally pure materials [4]. As regard overall

properties, the presence of those microscopic defects can have drastic consequences at the

macroscopic level. By way of example, when those defects are accounted for the maximum

pressure that an elastomeric solid can support changes from a theoretical infinite value for a
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sound material to a finite one, [4, 29]. As a result, cavitation appears as soon as the void vo-

lume fraction suddenly and rapidly increases and, at the same time, the pressure approaches

a critical value. Upon occurrence of such an event, unstable growth of microvoids in an elastic

network may ultimately yield the failure of the considered material.

In addition to this, let us mention briefly that the toughness of a material depends on the

ability of the microstructure to dissipate energy without propagation of defects like initiated

microvoids or cracks [16, 25]. Subsequently, the understanding of failure mechanisms would

also provide insight and afterwards enhancement into the production of tissue-engineering

scaffolds with properly appropriate architecture and tailored properties. Scaffolds can be de-

signed as porous structure (sponges) or in forms of hydrogels. Sponges facilitate cell adhe-

sion and the pore size variation affects cell adhesion, migration and deposition. Hydrogels

support the transportation of cells and bioactive agents and can suspend cells in a three

dimensional environment. Keeping the focus on the porosity, among the essential characte-

ristics that ideal scaffolds should share in order to be successful are the following [23, 22, 21] :

i) the scaffolds should have high permeability to enable adequate diffusion of nutrients for

the cells and the removal of waste products ; ii) the cell supports porosity should be suffi-

ciently high to allow for the ingress of cells and provide the cells space to proliferate and

form the ECM ; iii) they should have a large surface area ; and iv) the pore size should be

fine-tuned to the cells type applied.

In this numerical study, the growth of a small spherical void within a polymeric gel is vie-

wed through the prism of micromechanics [24, 8, 10] and finite element analysis. A two-

level representation of the material at hand is considered. The mesoscopic scale is treated

through an axisymmetric representative volume element (RVE) composed of two phases : a

homogeneous void free matrix and spherical void. The behaviour of the RVE is appropriately

averaged to provide the so-called macroscopic behaviour of the material considered as homo-

geneous. The calculations are very similar to many earlier similar simulations, the prototype

of which is due to Koplik and Needleman [17]. The boundary conditions of the RVE are

prescribed under proportional stressing in such a way that the isotropically invariant stress

triaxiality keeps a constant prescribed value throughout the loading displacement controlled

history.

2 Governing equations

The problem formulation and material modelling of hydrogels are briefly presented in this

section. Closely following works in [14, 15, 28], the governing equations and corresponding

boundary conditions for equilibrium swelling deformation of this material are described.

They serve as the basis for the numerical studies presented in the subsequent sections.

2.1 Kinematics and balance equations of finite growth

Consider a hydrogel body (current state) of volume Ω enclosed by a surface Γ, subjected to

body force, b
¯
, and surface traction, t

¯
. Due to immersion of the hydrogel body in a solvent

environment of chemical potential µ (per solvent molecule), a transport of the solvent mole-

cules occurs within Ω and across Γ. In addition, part of the surface Γ may be mechanically

constrained (e.g., bounded to a rigid body) and/or chemically isolated from the solvent. Due
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to large deformation, it is more appropriate to use nominal quantities referring to a reference

state with fixed volume Ωo and surface Γo. A generic material particle occupying position X
¯

at the reference state moves to position x
¯
(X

¯
, t) at the current state at time t. The deformation

gradient tensor maps both reference states, namely,

FiK =
∂xi(X

¯
, t)

∂XK
with J := det F

¯̄
> 0 (1)

While the choice of the reference state is arbitrary in general, we choose the dry state of the

hydrogel as the reference state in the present study. Such a choice is necessary for the use of

a specific free energy function. However, let us mention from now that a numerical challenge

has to be circumvented in finite element analysis by using an intermediate configuration for

which J 6= 1. The equation of force balance in terms of the nominal stress s
¯̄

and boundary

conditions can be set as follows

∂siK(X
¯

, t)
∂XK

+ Bi(X
¯

, t) = 0 and X
¯
= X̄

¯
or siK NK = T̄o

i (2)

where T̄
¯

o
is traction per unit area of the reference surface with the unit outward normal

N
¯

and the barred quantities are prescribed. In the circumstance of absence of any chemical

reaction, the conservation of the number of injected small molecules at the chemical potential

µ into the gel, in the vicinity of X
¯

, read

∂C(X
¯

, t)
∂t

+
∂JK(X

¯
, t)

∂Xk
= r(X

¯
, t) (3)

where r is the number of the small molecules per unit time injected into a volume element

dV, J NK dA is the number of the small molecules per unit time crossing an element of area

N
¯

dA, and C be the concentration of the solvent number. The polymers and the individual

small molecules are assumed to be incompressible, which is reflected in the incompressibility

condition

1 + v C(F
¯̄
, C) = J (4)

where ν is the volume per small molecule and ν C is the volume of the small molecules in

the gel divided by the volume of the dry polymers.

2.2 Constitutive equations

Standard reasoning in thermodynamics accounting for condition of molecular incompressi-

bility through the use of a field of Lagrange multiplier Π results in (refer to, e.g., [6, 13, 27]

and also to above mentioned references)

siK =
∂W(F

¯̄
, C)

∂F
¯̄

− Π JHiK , µ =
∂W(F

¯̄
, C)

∂C
+ Π v (5)

where W is the free energy of the gel and H
¯̄

is the transpose of the inverse of the deformation

gradient F
¯̄
, , namely, HiKFiL = δKL and HiKFjK = δij

1.

1. Algebraic identity :
∂ (det F)

∂FiK
= det FHiK
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For the dissipation due to solvent migration, we can correlate the solvent flux, J, to its driving

force, the chemical potential gradient, as

J = −M∇Xµ (6)

The spatial differential operator ∇X is taken with respect to the reference configuration. The

kinetic tensor M may not be constant in general, but is all positively definite.

The choice of an explicit form of the free-energy function W for elastomers and soft tissues

is a controversial problem. This choice is needed in order to solve the initial value problem

under consideration. Following Flory and Rehner [11], W has the form W(F
¯̄
, C) = Ws(F

¯̄
, C)+

Wm(C) reflecting the stretching network of the polymers, Ws, and the mixing of the polymers

and the small molecules, Wm. These two terms are taken to be

Ws(F
¯̄
, C) =

1

2
NkT(FiK FiK − 3 − 2 log J)

Wm(C) = −
kT
v

[

vClog
(

1 +
1

v C

)

+
χ

1 + v C

]

(7)

where N is the number of polymer chains in the gel per unit volume of the dry polymers,

v is the volume per solvent molecule, T is the absolute temperature, and k is the Boltzmann

constant. The first term inside the bracket comes from the entropy of mixing, and the second

from the enthalpy of mixing. The Flory interaction parameter χ is a dimensionless measure

of the enthalpy of mixing, with representative values χ = 0 − 1.2. For applications that

prefer gels with large swelling ratios, materials with low χ values are used. The enthalpy

of mixing motivates the small molecules to enter the gel if χ < 0, but motivates the small

molecules to leave the gel if χ > 0. The chemical potential and stresses are normalized by k T
and k T/v, respectively. The material properties of the hydrogel is fully determined by three

parameters : NkT, kT
v , and χ. The first two combine to give one dimensionless parameter,

Nv. It is well known that NkT defines the initial shear modulus of the polymer network,

with the number N proportional to the crosslink density ρc,[27, 26]. A representative value

of the volume per molecule is v = 10−28 m3. At room temperature, k T = 4 × 10−21 J and

k T/v = 4 × 107 Pa. In the numerical examples below, we will take the values N v = 10−3

and χ = 1.2. The normalized chemical potential is mimicked by a temperature-like variable,

which is uniform in the polymeric gel, and is incremented as a loading parameter. The whole

governing equations and the thorough approach have been implemented into Abaqus via a

UHYPER subroutine. [14, 15, 28].

3 The axisymmetric RVE model

The voids are assumed to be uniformly distributed inside the matrix material as shown in

Figure 1-a. Specifically, the position of these voids are presumed to form a hexagonal crystal

lattice in such a way that the shape of the unit microstructure is a prism with hexagonal

basis face with inner radius Ro, height 2 Lo, and containing an initially spherical void with

radius ro. In order to reduce the effort of calculations to a two-dimensional analysis, the

cross section of the unit microstructure has been simplified as a cylinder, as done in [5,

17]. Due to this approximation, the axisymmetric RVE is shown in Figure 1-d for which a
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cylindrical reference coordinate system with radial coordinate R, circumferential angle Θ

and axial coordinate Z is used for the analysis. In the initial undeformed configuration,

the RVE model is a cylinder with diameter 2 Ro and height 2 Lo = 2 Ro (for the sake of

simplicity). The initial axisymmetric RVE geometry is then simply characterized by the initial

void volume fraction fo given by fo = 2
3

(

ro
Ro

)3
. The RVE model is assumed to be subjected

to axisymmetric deformations with constant prescribed overall triaxiality so that all field

quantities are independent of Θ.

×

2 Ro

2
L

o

×

×

a)
b) c)

d)

Axisymmetric RVE

E
¯ X

E
¯ Y

E
¯ Z

bc
E
¯ R

E
¯ Z

Figure 1 – Three-dimensional hexagonal arrangement of spherical voids. a) Schematic repre-
sentation of a porous polymeric gel which is considered as an array of unit hexagonal RVEs,
each containing a single spherical void. The porous unit hexagonal microstructure shown in
(b) is approximated by the axisymmetric RVE model displayed in (d).

As a consequence of the lattice periodicity all outer planes of the unit cell have to move as

rigid planes in coordinate directions during the process of loading (Figure 2). The faces at

R = Ro and Z = Lo will have a uniform normal displacements and their mutual orientations

will be maintained. These requirements impose the RVE model to remain, during the finite

strain deformation process, a cylinder which is thus characterized in an arbitrary state by

ℓR = Ro + uA
R and ℓZ = Lo + uA

Z where uA
R and uA

Z are the radial and axial components

displacement of the upper right corner A. Because of these constraints, only one quarter

geometry of the RVE model (0 ≤ R ≤ Ro, 0 ≤ Z ≤ Lo) needs to be analyzed and is drawn in

Figure 2.

The overall deformation of the RVE model can be calculated from the normal displacements

of the outer faces. The macroscopic total logarithmic strain tensor and Cauchy stress tensor

possess the same principal directions, which are the radial and axial directions. The effective

strain Ee defined by Ee =
2
3 |EZ − ER| where ER and EZ are the macroscopic principal strains,

is chosen as the overall deformation of the RVE model and the independent variable for
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×

×
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L
o

×

b
A

ΣR

ΣZ

Mechanical loading

ΣZ ≥ 0

ΣR = α ΣZ

α is kept constant

T =
1

3

(1 + 2α)

|1 − α|
E
¯ R

E
¯ Z

Figure 2 – Axisymmetric RVE model containing an isolated spherical void and to be FE
analyzed.

presenting most results. The effective von Mises stress Σe , hydrostatic stress Σh, and the

overall stress triaxiality T result from

Σe = |ΣZ − ΣR| , Σh =
1

3
(ΣZ + 2 ΣR) , T :=

Σh

Σe
=

1

3

(ΣZ + 2 ΣR)

|ΣZ − ΣR|
(8)

where ΣR is the remote macroscopic principal stresses in both R and Θ directions, and ΣZ

in the Z-one. The RVE model is presumed to be remotely loaded with predominant axial

stress ; that is the axial direction is assumed to be the maximum principal direction and the

components of the overall stress tensor Σ
¯̄

are then such that ΣZ ≥ ΣR.

× ×

Solvent with chemical potential µ

Polymer imbibed with a solvent which migrates
into (out of) the RVE model through its boundary

Dry polymer
network Swelling

Deswelling

E
¯ R

E
¯ Z

Figure 3 – Swelling-deswelling of the axisymmetric RVE model. After swelling the porosity
is maintained constant.

For metal, it is a well known fact that the stress triaxiality ratio T is the most important

driving force to void growth in porous materials [5, 17]. On that account, a general problem in

RVE model computations is to maintain T constant in the course of loading irrespective of the

large displacement of the cell faces and the unstable stiffness behaviour. The finite elements

used were eight-nodes quadrilateral isoparametric elements. The mesh surrounding the void

is slightly refined and it was judged to be sufficiently refined for this study (800 Q8 elements).

Care has been taken to insure that the meshes were sufficiently refined and that the results

were independent of the degree of refinement. The Riks’s arc-length method in Abaqus is

used in order to handle the inevitable instability of the RVE and to proceed with further

calculations. The overall stress and strain rates are directly computed from the reaction forces
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and the applied displacement rates. The actual void volume fraction f corresponding to

the evolution of the microvoid is calculated using numerical integration from the updated

coordinates of the nodes at the void-matrix interface during the deformation of the RVE

model. The initial conditions and loading rate of the RVE model are chosen such that inertial

effects are negligible. No artificial damping has been used in all computations. The value of

the imposed axial displacement uA
z depends essentially upon the value of fo and the fixed

stress triaxility T as well. In addition, the imposed boundary conditions have to be ramped

up using a function of time over the first part of calculation (typically the first 1-10%).

4 Numerical results

For the simulation presented hereafter, the chosen hydrogel properties are the following : ini-

tial polymer volume fraction φo = 0.90, degree of cross-linking Nv = 0.0010, and parameter

χ = 0.10. At the reference state corresponding to an initially swollen hydrogel of proper-

ties φo, Nv and χ, its initial chemical potential is prescribed by µo/kT given by µo/kT =

Nv(φ1/3
o − φo) + ln(1 − φo) + φo + χφ2

o = −1.3216. This prescribed value is accounted for in

Abaqus as an initial condition [28]. The porosity fo takes on values 0.10, 0.50, 1.0, 2.0, 5.0 and

10.0 %. T ranges from 1
3 (pure tension) to 2 (severe stress state for soft materials). However,

in the interest of place only the value fo = 5.0 % is considered.

T = 1
3 (pure tension)

T = 1 T = 2

E
¯ R

E
¯ Z

Freely swelled RVE model
(Configuration before
mechanical loading)

Figure 4 – Distribution of lagrangian strain component LE22 at the end of calculations and
final deformation shape of the RVE model for fo = 5.0%. The hydrogel properties are φo =
0.90, Nv = 0.0010, and χ = 0.10. The mechanical loading of the freely swelled RVE model
has been performed under constant stress triaxiality ratio T = 1

3 (a), 1 (b), and 2 (c).

The swelling-mechanical loading of the RVE model at hand may be summarised as follows :

• the polymer network of the RVE model with initial porosity fo is first imbibed with

solvent as shwn in Figure 3. Subsequently, homogeneous swelling occurs and the size

of the RVE model changes a lot irrespective of the value of fo. At equilibrium the

chemical potential µ is homogeneous throughout the RVE model which porosity after

swelling turns out to be practically equal to fo.
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• The swelled RVE model is then subjected to axial and lateral overall stresses under

conditions of constant prescribed overall stress triaxiality.

Contour plots of the lagrangian strain component LE22 are shown in Figure 4 corresponding

to T = 1
3 , 1, 2, respectively. For each initial porosity fo and for each value of the overall

stress triaxiality T, the evolution of the normalized effective stress, Σe
kT and the porosity f are

displayed in Figure 5 as a function of the equivalent strain Ee.
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Figure 5 – Evolution of the normalized equivalent stress Σe
kT and the void volume fraction f

in terms of the macroscopic equivalent strain Ee of the RVE model. The initial value of the
void volume fraction is 5.0 % and the stress triaxiality T is fixed to be 1

3 , 1 and 2.

As an illustration, Figure 6 shows the deformation of the RVE model and evolution during

the whole process of loading of the lagrangian strain component LE22 contours for fo =

0.10 % and T = 1. The corresponding curves ( Σe
kT , Ee) and ( f , Ee) are shown in Figure 7 from

which one can observe that beyond the peak stress (Ee = 0.53, ( Σe
kT )

max = 2.35 × 10−3, and

f = 0.17) the void volume fraction increases very quickly.

3.44 mm

3.
44

m
m

uz = 1.33 mm
uz = 1.93 mm

uz = 2.34 mm
uz = 4.98 mm

E
¯ R

E
¯ Z

Figure 6 – Deformation of the RVE model and evolution of contours of the lagrangian strain
component LE22 for fo = 0.10 % and T = 1. The hydrogel properties are φo = 0.90, Nv =
0.0010, and χ = 0.10.
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Figure 7 – Evolution, for T = 1, of the normalized effective stress and the void volume
fraction in terms of the macroscopic effective strain Ee of the RVE model.

5 Concluding remarks

This study focuses on the mechanical behaviour of porous polymeric gels intended for use

in tissue engineering and regenerative medicine as scaffolds ldots. Following Hong et al. [14]

and Koplik and Needleman [17], we present a computational framework for investigating the

growth of microvoids initially assumed to be spherical and uniformly distributed inside the

matrix material. In this preliminary investigation the swollen axisymmetric RVE is viewed

as a two-component body composed of two incompressible components, namely, an elastic

polymer and a solvent. The distribution of the solvent is assumed to be uniform and then

the state of the RVE is fully characterized by the radius of the central spherical microvoid.

Under the conditions that i) the ambient chemical potential of the solvent is fixed, ii) the

chemical equilibrium prevails at the interface between the polymer and the environment

interface, and iii) the mechanical loading of the RVE is such that the stress triaxiality ratio is

maintained constant throughout the whole process of deformation. The evolution of the size

and the shape of the microvoid has been obtained. From this preliminary study, the following

conclusions are drawn.

• For a porous polymeric gel, the amount of solvent molecules inside the material is related

to the chemical potential of the environment. The degree of swelling is obtained by solving

equations that account for the simultaneous interaction of mechanics and absorption. It can

be determined with a free swelling stretch, using a finite element analysis.

• As an expected result, the value of initial porosity has a large influence on the overall me-

chanical behaviour of a porous polymeric gel. Higher the initial value of the void volume

fraction, lower the resistance (maximum effective stress) of the polymeric gel.

• The size of the swollen axisymmetric porous RVE model does not depend on the initial

value of the porosity and the void volume fraction is kept constant after swelling.

• For moderate stress triaxiality (e.g., T = 1
3 corresponding to a tensile test), the effective

stress Σe continuously increases with equivalent strain Ee. The same applies to the varia-

tions of void volume fraction f in terms of Ee, (red curves in Figure 5).

• For high stress triaxiality, the curves normalized effective stress vs equivalent strain dis-

play maximum depending on both the initial porosity and the fixed value of the overall
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triaxiality. For T = 1 and 2, beyond macroscopic peak stresses, the void volume fraction

rapidly increases, (magenta and blue curves in Figure 5).

The prevalent approach of modeling the porous biomaterial at hand as an assemblage of

axisymmetric unit RVEs reduces the amount of work required for the multiscale analysis.

This convenience comes with an approximation since this assemblage cannot patently fill

the space continuously, and then is only suited for moderate porosity. Furthermore, the used

axisymmetric RVEs do not allow the adjustment of arbitrary stress ratios in three directions.

Otherwise, it is clear from the previous simulation that special care would be considered after

maximum load occur in the vicinity of the boundary of void. Indeed, it is well known that

strong softening of the material result in localized deformation and consequently the mesh

size dependence. After the peak macroscopic stresses the equivalent stress drops abruptly

and the validity of the numerical results is expected to quickly deteriorate because of mesh

excessive distortion. Finally, so far for the analysis presented above a criterion for the final

failure of the intervoid ligament is clearly missing.

The fact of the matter is that this preliminary study could be of some relevance in regard

to failure of responsive polymeric gels. Numerous tissues and organs are hydrogel-like in

nature and several issues related to the mechanics of hydrogels remain open (a short list is

given in the review [20]). With increment of biomedical applications, computational model-

ling to predict the performance of these biomaterials for use in regenerative medicine and

tissue engineering proves to be a valuable aid in assisting understanding of the behaviour of

hydrogels and their optimization as well. The investigation of the effects of the constitutive

parameters entering the theory, namely, the number N of polymer chains per unit volume

of the dry polymers, the volume per solvent molecule v, and the Flory interaction parameter

χ, on the overall behaviour of a porous polymeric gel are contemplated as a future research

work.
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