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Abstract:
Functionality of assembled products mostly rely on the ability of the manufacturer to produce under
some quality requirements. Parts which do not meet these requirements represent a manufacturing
waste which can be at the origin of substantial losses in terms of money and credibility. Quality con-
trol and defect detection are two keypoints of predictive process management. At the design stage, a
statistical tolerance analysis can be performed to predict the process quality. This imply to estimate
a so-called defect probability which quantifies the probability that the final assembly does not meet
functional requirements. In general, this quantity depends on a number of process specifications (toler-
ances, capability levels) set a priori by the manufacturer, but also on the monitoring of the process itself
since the process parameters (mean shift value and standard deviation) vary statistically for different
batches. In this paper, we give an alternative point of view on an existing method, namely the Advanced
Probability-based Tolerance Analysis of products (APTA), proposed in literature to estimate the defect
probability. This method, originally relying on a double-loop sampling strategy, is revisited within the
Bayesian framework, and an augmented approach is proposed to estimate the defect probability in a
more efficient way. The efficiency of the augmented approach for solving tolerancing problems with
APTA is illustrated on a linear reference test-case.

Keywords: APTA / tolerance analysis / defect probability / reliability / Bayesian
approach

1 Introduction
Variability in the manufacturing process is an inherent drawback of mass production [1]. It means that
some manufactured parts may have out-of-tolerance dimensions due to various factors such as varying
material properties, tool wear or human errors. In order to improve quality and cost effectiveness of
a process, it is necessary to take into account these sources of uncertainty. Indeed, the future system
performance may also directly depend on the quality of the manufactured components and assembly,
which implies the way the process has been controled and adjusted.
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In the literature, uncertainty is usually decomposed into aleatory uncertainty, supposed to represent
natural variability (considered as irreducible in a specific context), and epistemic uncertainty, ensuing
from a lack of knowledge or mathematical simplifications and which can be reduced by adding more
information or increasing the model fidelity. This conceptual dichotomy is problem-dependent, as
pointed out in [2], and should be interpreted as a practical guideline to discern between uncertainties that
can be reduced with a given reasonable effort (e.g. by gathering more data, running more simulations or
refining the model) and those which cannot. In this paper, the problem under consideration combines
both types of uncertainty since the part dimensions vary due to aleatory uncertainty (e.g., variability
in material properties) and epistemic uncertainty (e.g., tool wear). Moreover, the process parameters
themselves (roughly speaking, the mean and the standard deviation of the batches sampled for statistical
process control) are effected by various sources which can be either seen as aleatory or epistemic
(e.g., statistical uncertainty arising from measuring procedures [3] or possible human errors from the
machine tool operator). For these reasons, it is extremely difficult to detect and qualify the role of these
uncertainty sources and to determine whether they can be reduced or not. These considerations depend
on the ability of the manufacturer to improve its quality control policy and management. In this paper,
we will only focus on the fact that we are confronted to a bi-level uncertainty stemming from both
part dimensions and process parameters. Finally, the process quality can be quantitatively measured by
estimating a so-called defect probability PD, measuring the number of defective parts per million with
respect to the uncertainties affecting the process.

In this paper, we consider a fully probabilistic framework by assuming that uncertain quantities are
modeled by random variables. Our aim is to illustrate how the Advanced Probability-based Tolerance
Analysis of products (APTA) method [4], developed to estimate the defect probability by taking jointly
into account both uncertainties arising from the basic random variables (i.e. the variability of the dimen-
sions of manufactured parts) and from the process parameters (i.e. the mean shift value and the standard
deviation of a given manufactured batch of parts) can be numerically enhanced using a Bayesian pre-
dictive approach [5], namely the augmented approach. This Bayesian approach enables to solve the
numerical probability estimation in a more efficient way in terms of number of calls to the tolerance
chain function, which can be possibly a computer model of the assembly or another costly-to-evaluate
function.

The paper is organized as follows. Section 2 recalls basic principles of statistical tolerance analysis
and gives an overview of APTA. Section 3 introduces the augmented approach and details how it can
be relevant for enhancing the sampling strategy inherent of APTA. Section 4 aims at demonstrating
the efficiency of the augmented approach coupled to APTA for solving a two-part assembly test-case.
Finally, Section 5 draws some conclusions and presents future works.

2 Statistical tolerance analysis and APTA

2.1 General formulation for statistical tolerance analysis
To ensure some system performances, manufacturers have first to prevent misassemblies by reaching
and maintaining quality levels in terms of manufacturing process. Tolerances, often obtained from
drawing dimensions, define admissible variations in the geometry and positioning of parts or subsys-
tems [6]. The statistical treatment of these tolerances comes from the fact that manufacturing processes
are affected by uncertainties (e.g., material properties variability and tool wear). Thus, for a given pro-
duction batch of N samples (i.e. N manufactured parts of dimension X), one can perform a statistical
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treatment on these data and show that part dimension X follows a given probability distribution. This
general behavior is illustrated in Figure 1.
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Figure 1 – Illustration of statistical variability of process parameters for 10 production batches of a part,
whose nominal dimension value is T = 10 and tolerance interval is t = 0.2 (adapted from [7]).

The global functionality of the assembly can be expressed by the tolerance chain function:

Y = f (X) (1)

where X = (X1,X2, . . . ,Xd)
> is the vector of d part dimensions modeled by random variables and Y is

the scalar assembly response, which is also a random variable. The tolerance chain function f (·) can
be either linear or nonlinear, cheap or costly-to-evaluate, explicit or not. In the latter case, the function
is evaluated through a numerical simulation, such as the resolution of a finite element problem or can
be obtained by a computer-aided design model. The idea is to make sure that the previous quantity of
interest (QoI) Y lies in a functional interval such that:

Y ∈ [LSLY ,USLY ] (2)

where LSLY and USLY are functional bounds (respectively the Lower and Upper Specification Limits of
Y ). From the manufacturer point of view, finding the good tradeoff between quality and manufacturing
cost is always a critical issue. Production costs are directly impacted by how tight the required toler-
ances are, while quality is driven by customer requirements in terms of allowable defect probability,
expressed in parts per million (ppm). This quantity can be defined as follows:

PD = P
[
Y /∈ [LSLY ,USLY ]

]
. (3)

Estimating this defect probability can be challenging since only a few parts per million may be defective.
Here, the usefulness of the reliability framework and its set of methods to practically compute this
probability is highlighted. A number of authors developed various approaches based on reliability
methods for this purpose [4, 8, 9, 10, 11]. The evaluation of the defect probability depends on the
complexity of the tolerance chain function f (·). Considering Eq. (2), one can introduce two limit-
state functions, g1(·) and g2(·), which characterize the two different functional conditions the assembly
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response Y is subjected to:

g1(X) = f (X)−LSLY (4a)

g2(X) = USLY − f (X). (4b)

Thus, estimating PD is similar to solving a system reliability problem for a series system modeled by
the two previous limit-state functions. The probability can be expressed as follows:

PD = P
[
∪2

j=1{g j(X)≤ 0}
]

(5a)

= P [g1(X)≤ 0}]+P [g2(X)≤ 0}]−P
[
∩2

j=1{g j(X)≤ 0}
]

(5b)

≤ P [g1(X)≤ 0}]+P [g2(X)≤ 0}] . (5c)

The last inequality in Eq. (5c) becomes an equality if the two hyperplanes associated with g1(·) and
g2(·) result anticorrelated [12], which is equivalent to a null intersection. Such a problem is often
encountered in the field of tolerance analysis, due to classical formulations of tolerance chain functions
and functional bounds. For other hyperplane configurations, the interested reader may refer to [10, 11].

In mass production, each dimension Xi is a random variable, often assumed to follow a Gaussian dis-
tribution [6]. For the sake of simplicity, the variables Xi, i ∈ J1,dK are considered to be independent. In
the following, we will stick to these two assumptions since they are the most commonly encountered
in literature and in many daily life cases. Other assumptions such as different types of distribution and
possible correlation between part dimensions can be found in [13] but are not within the scope of the
present paper. Without any loss of generality, one can assume that Xi is defined by a target value, Ti,
and a tolerance interval, ti = USLi−LSLi, as shown in Figure 2a. However, this Gaussian centered
model implicitly assumes a quasi-perfect production process. In reality, the statistical behavior of the
manufacturing process is controlled by two capability indices [14], Cpi and Cpki, respectively defined
as:

Cpi =
ti

6σi
, Cpki =

ti/2−|δi|
3σi

= min
(

µi−LSLi

3σi
,
USLi−µi

3σi

)
(6)

where σi and δi are the statistical parameters (respectively, the standard deviation and the mean shift
δi = µi− Ti, with µi the mean of the distribution of dimension Xi) as represented in Figure 2b. In
statistical process control, a production batch is considered to be admissible if the two capability indices
meet the imposed requirements, i.e. Cpi ≥C(r)

pi and Cpki ≥C(r)
pki. These requirements are chosen by the

manufacturer in compliance with those of the customers. Thus, using the equations characterizing the
capability indices, one can define a so-called conformity domain VD which can be represented in two-
dimensional diagram as shown in Figure 2c. To understand this diagram, one first needs to recall that
the conformity domain is triangular due to the bounding caused by the capabilities in Eq. (6). Moreover,
the grey area at the bottom of the diagram represents the fact that the lowest value for σi is σ

(min)
i 6= 0

since such a value is unreachable in practice. Thus, the standard deviation σi belongs to an interval[
σ
(min)
i ,σ

(max)
i

]
, such that:

σ
(min)
i =

ti
6C(max)

pi

, σ
(max)
i =

ti
6C(r)

pi

(7)

where C(max)
pi represents the maximum capability of the variability domain. In the following, either

the capability or the standard deviation will be considered as a random variable due to process vari-
ability since they are linked by Eq. (6). As a consequence, the mean shift δi also varies in an interval
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[
−δ

(max)
i ,δ

(max)
i

]
where:

δ
(max)
i =

ti
2

1−
C(r)

pki

C(max)
pi

 . (8)

The idea for the manufacturer is to estimate the defect probability associated to these process specifica-
tions and try to meet the customer’s expectations regarding the number of defective parts (a customer
may also want to pay for a high quality process ensuring a very small amount of defective ppm). How-
ever, a key issue remains the way we take into account in the probability estimation the fluctuations (due
to some variability in material properties, tool wear or small changes in the process) affecting (δδδ ,σσσ)

over time, with δδδ = (δ1, . . . ,δd)
> and σσσ = (σ1, . . . ,σd)

>. Among existing approaches in literature, the
Advanced Probability-based Tolerance Analysis of products (APTA) method relies on the concept of
dynamic shifted distribution [15] and allows to handle two uncertainty levels: the first one consisting
of basic random variables gathered in X (representing the variability affecting part dimensions) and the
second one at the level of the process parameters (δδδ ,σσσ) which are themselves uncertain. To remain
coherent, we will now use the notation (∆∆∆,ΣΣΣ) since they are random vectors. In the next section, a brief
summary of the method is provided following the original works in [4, 7].

2.2 Brief overview of the Advanced Probability-based Tolerance
Analysis of products (APTA)

APTA, as originally formulated in [4, 7], mainly relies on treating the problem of tolerance analysis in a
Bayesian framework, assuming that each part dimension follows some Gaussian distribution such that
Xi ∼N (Mi,Σi) (with Mi representing the mean value which also a random variable due to the relation
Mi = ∆i +Ti as shown in Figure 2b). All the Xi variables are assumed to be independent and can be
gathered in the random vector X of joint probability density function (pdf) fX(·;δδδ ,σσσ) :DX⊆Rd→R+.
Moreover, for the sake of simplicity, all the distribution parameters couples (δi,σi) are supposed to be
independent and h∆∆∆,ΣΣΣ(·, ·) is the joint pdf defined over the conformity domain VD. In the two previous
expressions of the pdfs, one needs to pay attention to the following notations which are intensively
used in this article: a comma symbol refers to joint variables while a semi-colon refers to conditional
variables. Thus, the defect probability can be expressed in the APTA framework as follows:

PD = Eh∆∆∆,ΣΣΣ

[
PD|δδδ ,σσσ (∆∆∆,ΣΣΣ)

]
(9a)

=
∫

VD

PD|δδδ ,σσσ h∆∆∆,ΣΣΣ(δδδ ,σσσ) dδδδ dσσσ (9b)

=
∫

VD

(∫
∪2

j=1{g j(x)≤0}
fX(x;δδδ ,σσσ)dx

)
h∆∆∆,ΣΣΣ(δδδ ,σσσ) dδδδ dσσσ (9c)

=
∫

VD

(∫
∪2

j=1{g j(x)≤0}
fX(x;δδδ ,σσσ)dx

)
d

∏
i=1

h∆i,Σi(δi,σi) dδi dσi (9d)

where PD|δδδ ,σσσ (δδδ ,σσσ) is a conditional defect probability evaluated for realizations of the pair (∆∆∆,ΣΣΣ). If
the function f (·) is linear (and the Xi are Gaussian variables), the conditional defect probability can be



23ème Congrès Français de Mécanique Lille, 28 au 1er Septembre 2017

LSLi USLi

ti

µi = Ti

(a) Illustration of a centered Gaussian manufacturing
process.
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(b) Illustration of a shifted Gaussian manufacturing pro-
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(c) Illustration of production batches mentioned in Figure 1 lying in a conformity domain
(δi,σi) for a given part dimension Xi (adapted from [7]).

Figure 2 – Two Gaussian models for manufacturing processes (the blue areas represent the non-
conformity area which has to be estimated by the defect probability). Below, a conformity domain
as a function of the statistical process parameters and the capacity levels (the grey area represents the
non-reachable domain).
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computed using the following analytical formula:

PD|δδδ ,σσσ (δδδ ,σσσ) = Φ

(
−µY −LSLY

σY

)
+Φ

(
−USLY −µY

σY

)
(10)

where Φ(·) is the cumulative distribution function (cdf) of the standard Gaussian distribution, µY and σY

are respectively the mean and standard deviation of the output Y . Eq. (10) corresponds to the exact case
where the First-Order Reliability Method (FORM) is licit [9, 12]. As previsouly discussed, since we are
confronted to a series system reliability analysis, another FORM-based method with a search algorithm
for multiple design points, known as Multi-FORM [16, 17], can be used in this case. If f (·) is nonlinear,
this expression is no longer available, and FORM cannot be applied anymore since the approximation
of each limit-state function by a linear hyper-plane is not a valid assumption. In this case, one needs to
use another approximation method (mostly the Second-Order Reliability Method (SORM) [12]) or any
dedicated simulation method (e.g., Crude Monte Carlo (CMC), Importance Sampling (IS), Directional
Sampling (DS), Line Sampling (LS) or Subset Sampling (SS)). Detailed descriptions and algorithms of
these sampling methods can be found in [18].

2.3 Discussion about some crucial steps of APTA
In their original paper [4], the authors explicitly use an outer Monte Carlo loop to sample over the VD

space some realizations of (∆∆∆,ΣΣΣ), and then evaluate, for each pair, the conditional defect probability
PD|δδδ ,σσσ (δδδ ,σσσ) using a FORM computation.

Thus, one can define three major steps in APTA which have to be discussed within the scope of this
paper, i.e. from a Bayesian point of view:

• firstly, one needs to define a prior joint pdf h∆∆∆,ΣΣΣ(·, ·) for process parameters (∆∆∆,ΣΣΣ) based on the
available data (provided by a procedure of statistical process control [1]) or following some expert
judgment;

• secondly, one needs to define a sampling strategy over the conformity domain VD so as to sample
a number of realizations of (∆∆∆,ΣΣΣ). Up to now, this step is achieved by CMC;

• thirdly, one needs to evaluate the conditional defect probability PD|δδδ ,σσσ (δδδ ,σσσ) for each sampled
pair.

The first point is problem-dependent since it concerns a priori modeling choices, while the two other
points derive from the numerical strategy and drive the computational cost and efficiency. By using a
Bayesian predictive approach (named augmented approach), it is possible to merge the last two points
and thus reducing the computational cost without loss of accuracy. Moreover, in the case where f (·)
is a nonlinear tolerance chain function, the use of FORM to estimate the conditional defect probability
could be improper and lead to erroneous results. Depending on the strength of the nonlinearity, only
simulation methods could be available and licit to evaluate such a probability. Finally, the rareness
of the probability could lead to dramatically increase the number of simulations. Consequently, the
augmented approach can be a relevant alternative to reduce simulation cost.

3 Estimating the defect probability by an augmented approach
Dealing with a bi-level uncertainty is a problem in the field of reliability. As illustrated in some early
papers [19, 20, 21, 22], taking statistical uncertainty affecting probability distribution parameters into
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account is of prime importance in terms of safety assessment. In [2, 23], the authors adress this topic
considering parameter uncertainty affecting probability distributions within the use of FORM. However,
this issue can be adressed in a more global way by considering a Bayesian framework and adopting a
certain view to numerically solve the problem [24].

In the context of reliability assessment, let us consider a problem expressed in terms of a number of
basic variables gathered in a d-dimensional random vector X∼ fX(x;θθθ) :DX ⊆Rd →R+. Adopting a
Bayesian point of view, one can assume that the uncertainty affecting probability distribution parameters
can be modeled using a prior distribution hΘΘΘ(·;ξξξ ) such that ΘΘΘ ∼ hΘΘΘ(θθθ ;ξξξ ) : DΘΘΘ ⊆ Rk→ R+, where ξξξ

represents some deterministic hyper-parameters (i.e. moments or bounds) characterizing the a priori
choice made following limited information or some expert judgment.

Then, performing a reliability analysis at a given value θθθ , realization of ΘΘΘ leads to what we call a
conditional failure probability:

Pf(θθθ) = P [g(X)≤ 0] =
∫
DX

1FX(x) fX(x;θθθ)dx (11)

where g : Rd → R is the limit-state function which characterizes the behavior of the system (failure if
g(x) ≤ 0, safety if g(x) > 0) and Fx = {x ∈ DX : g(x) ≤ 0} is the failure domain. Thus, following
the Bayesian framework adopted in [23], one obtains the predictive failure probability which takes into
account both uncertainties from basic variables and distribution parameters:

P̃f = EhΘΘΘ
[Pf(ΘΘΘ)] (12a)

=
∫
DΘΘΘ

Pf(θθθ)hΘΘΘ(θθθ ;ξξξ )dθθθ (12b)

=
∫
DΘΘΘ

(∫
DX

1Fx(x) fX(x;θθθ)dx
)

hΘΘΘ(θθθ ;ξξξ )dθθθ . (12c)

At this point, Table 1 aims at collecting elements from both types of analyzes (tolerance vs. reliability)
and comparing them to make the similarities between these two fields clearer and more explicit.

Table 1 – Analogy between tolerance analysis and reliability under parameter uncertainty frameworks.

Framework QoI Conditional QoI Level 1 uncertainty Level 2 uncertainty –
Basic variables Distribution parameters Deterministic hyper-parameters

APTA PD PD|δδδ ,σσσ (δδδ ,σσσ) X∼ fX(x;δδδ ,σσσ) (∆∆∆,ΣΣΣ)∼ h∆∆∆,ΣΣΣ(δδδ ,σσσ)
[
−δδδ

(max),δδδ (max)
]

[
σσσ (min),σσσ (max)

]
[
CCC(min)

p ,CCC(max)
p

]
Reliability P̃f Pf(θθθ) X∼ fX(x;θθθ) ΘΘΘ∼ hΘΘΘ(θθθ ;ξξξ ) ξξξ

The last equation, Eq. (12c), implies the need to develop a numerical strategy to estimate P̃f. It appears
that it can be numerically solved by two different approaches: a nested approach and an augmented
approach [24].

To put it simple, the nested approach is similar to a double-loop Monte Carlo sampling strategy which
requires to evaluate two different quantities: the first (inside) loop estimates the conditional failure
probability given in Eq. (11) by integrating overDX. The second (outside) loop estimates the predictive
failure probability given in Eq. (12b) by integrating over DΘΘΘ. In terms of sampling strategy, the nested
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Figure 3 – Nested vs. augmented sampling strategies (600 samples in total) for X1 ∼N (µX1 = 7,σX1 =
5/
√

3), X2 ∼N (Θ,σX2 = 2/
√

3) and one uncertain parameter Θ = µX2 ∼N (2,1.5)

approach can be illustrated by the trivial example shown in Figure 3a. This approach has been used in
literature in several contexts [25, 26].

The augmented approach relies on the definition of an augmented space through the vector Z def
= (ΘΘΘ,X)>

[27]. The idea is to sample jointly over both domains while respecting the conditioning of X on ΘΘΘ

though. The sampling strategy can be illustrated as in Figure 3b. It thus reveals that, at least, both
strategies are equivalent, but the augmented one offers better space-filling properties than the nested
one and allows to reduce the computational cost.

In this paper, we compare the use of an augmented approach to estimate the defect probability by the
APTA method with the traditional formulation in [4] based on a nested sampling strategy coupled with
FORM. Again, under the consideration of a set of nonlinear limit-state functions, FORM approxima-
tion may lead to strong errors in the defect probability estimation. Thus, using a simulation method
could be the only way to assess the conditional defect probability. This double-loop approach could be
unnecessarily expensive and could be replaced by an augmented one.

To summarize the different approaches, three generic algorithms are provided below. Algorithm 1
illustrates a double-loop nested approach, based on two Monte Carlo sampling loops. This purely
nested approach is the one which is the most encountered in engineering practice due to its easy-to-
implement aspect and robustness with respect to nonlinearities of the tolerance chain function or to the
input dimension. However, depending on the rareness of the defect probability, the simulation budget
to achieve convergence can be an issue. Moreover, if the tolerance chain function is a time consuming
computer code, this nested approach becomes untractable. Algorithm 2 illustrates the orignal APTA,
as formulated in [4]. The inner loop is replaced by a FORM analysis. The main advantage is that one
loop is removed which makes the algorithm less computationally demanding. Nevertheless, the main
drawbacks first concern the conditional defect probability estimation. In some specific cases, FORM
may be not licit. Then, the outer sampling loop may be time consuming regarding the accuracy one
wants over the VD space. As a remark, one can notice the preliminary isoprobabilistic transformation
phase, u = T iso(x), inherent to any FORM analysis. Such a phase is not discussed here in details, but
we can just mention that in this case, the Nataf transformation is most often applied [28]. Finally,
Algorithm 3 proposes an augmented version of the previous APTA algorithm. In this algorithm, the
loops have disappeared. The augmented formulation of the problem through the vector Z = (ΘΘΘ,X)>



23ème Congrès Français de Mécanique Lille, 28 au 1er Septembre 2017

enables to solve the problem using any approximation method (here, FORM and Multi-FORM) or
advanced simulation method (here, SS, which requires to defined a number of simulations Nsim per step).
That means that either nonlinear or costly tolerance chain functions can be efficiently evaluated in this
framework. In this case, all the problem is set by defining an adapted isoprobabilistic transformation
u = T iso(z) on the augmented vector. Here, the Rosenblatt transformation [29] has to be first applied
to the stochastic distribution parameters (mean shift and standard deviation for the tolerance analysis)
and then to the basic input random variables, conditonally to the realizations of the parameters. The
final defect probability is then computed and obtained as the output of the chosen algorithm (which
can be any approximation or simulation method) replacing the symbols *** in Algorithm 3. In the
case of a simulation method which does not require any isoprobabilistic transformation (e.g., CMC or
some versions of IS), Algorithm 3 just reduces in a single vectorized simulation step. As a final remark,
one should notice that, in this augmented formulation, we do not have access to the conditional defect
probability anymore.

Algorithm 1: Nested CMC for
tolerance analysis

Start;
Define: h∆∆∆,ΣΣΣ, fX, Nx, Nδδδ ,σσσ ;
For k = 1 : Nδδδ ,σσσ ;

Sample
(

∆∆∆
(k),ΣΣΣ(k)

)
;

For i = 1 : Nx;

Sample X(i) |
(

δδδ
(k),σσσ (k)

)
;

Evaluate: g(x(i));

Get P̂(k)

D|δδδ (k),σσσ (k)
= 1

Nx ∑
Nx
i=11Fx (X(i));̂̃PD = 1

Nδδδ ,σσσ
∑

Nδδδ ,σσσ

k=1 P̂(k)

D|δδδ (k),σσσ (k)

Algorithm 2: Nested
APTA with FORM [4]

Start;
Define: h∆∆∆,ΣΣΣ, fX, Nδδδ ,σσσ ;
For k = 1 : Nδδδ ,σσσ ;

Sample
(

∆∆∆
(k),ΣΣΣ(k)

)
;

Define: u = T iso(x);
Solve a FORM analysis;

Get P̂(k)

D|δδδ (k),σσσ (k)
= pf,FORM;̂̃PD = 1

Nδδδ ,σσσ
∑

Nδδδ ,σσσ

k=1 P̂(k)

D|δδδ (k),σσσ (k)

Algorithm 3: Augmented
APTA

Start;
Define: h∆∆∆,ΣΣΣ, fX,(Nsim/step);
Define: u = T iso(z);
Augmented *** analysis;̂̃PD = Output of ***

N.B.: *** stands for any method such as
FORM, SORM, SS, etc.

The following section aims at illustrating the benefits of the augmented framework for solving statistical
tolerancing problems with the APTA method on a two-part assembly test-case.

4 Numerical applications
The following numerical application has been implemented in Matlab R© and performed using the open
source toolbox FERUM v4.1 [30].

4.1 Two-part assembly illustration
As an illustrative example, we are considering a two-part-assembly as presented in Figure 4. This
example is the same as the one presented as reference example in [4]. We use it here as a benchmark
to compare results obtained by the traditional APTA and those obtained by the use of the augmented
formulation of this method.

The functional requirement can be expressed with the following linear tolerance chain function:

Y = f (X) = X1 +X2 (13)

s.t. Y ∈ [9.5,10.5] . (14)
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Part #1 Part #2

Y

X1 X2

9.5

10.5

Figure 4 – Linear two-part assembly.

The customer specifies to the manufacturer a production quality requirement of 5 ppm, which means
that PD = P

[
Y /∈ [9.5,10.5]

]
≤ 5×10−6. The process specifications can be found in Table 2. A general

input probabilistic model is given in Table 3. In the following, the notations δδδ = (δ1,δ2)
> and σσσ =

(σ1,σ2)
> are used. If we refer to the original paper [4], we could consider three different scenarios:

• Case #0 - Static assumptions: the distribution parameters are assumed to be fixed at some deter-
ministic values ∆∆∆ = δδδ

0 and ΣΣΣ = σσσ0. The results for this scenario are just recalled in Figure 5a for
the sake of clarity but are no more discussed in the following.

• Case #1 - Uniform mean shift and fixed standard deviation: in this case, ∆∆∆∼U
([
−δδδ

(max);δδδ
(max)

])
and ΣΣΣ = σσσ0. The results for this scenario are just recalled in Figure 5b for the sake of clarity but
are no more discussed in the following.

• Case #2 - Uniform mean shift and uniform standard deviation: in this case, ∆∆∆∼U
([
−δδδ

(max);δδδ
(max)

])
and ΣΣΣ∼ U

([
σσσ (min);σσσ (max)

])
.

Following Eqs. (6) and (7), one can consider either the standard deviation or the capability as random.
In the following, according to a common manufacturing engineering practice, we will sample over the
capabilities such that CCCp ∼ U

([
CCC(min)

p ;CCC(max)
p

])
for Case #2.

In the following, we will only focus and analyze simulations and results concerning Case #2 which is
the most complete test-case since both mean shift and standard deviation are varying.

Table 2 – Process specifications for the two-part example.

Xi Ti ti C(r)
pi C(r)

pki

X1 6 1/(2
√

2) 1 1
X2 4 1/(2

√
2) 1 1
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𝜎𝑖  

𝛿𝑖  

0 
−
ti
2

 
ti
2

 

1 

2 3 

4 5 

(a) Results for Case #0: 1 ≡ 318 ppm, 2 ≡ 0 ppm,

3 ≡ 521 ppm, 4 ≡ 0 ppm, 5 ≡ 1551 ppm.

𝜎𝑖  

𝛿𝑖  

0 

Cpi = 1.5 

ti
2

 −
ti
2

 

15 ppm 

13 ppm Cpi = 2 

(b) Results for Case #1.

Figure 5 – Bibliography results for the two-part example for Case #0 and Case #1.

𝜎𝑖  

𝛿𝑖  

0 ti
2

 −
ti
2

 

33 ppm 

Cpi = 2 

[34, 38] ppm 

(a) Results for C(max)
pi = 2.

𝜎𝑖  

𝛿𝑖  

0 

Cpi = 1.5 

ti
2

 −
ti
2

 

51 

ppm 

[53, 62] ppm 

(b) Results for C(max)
pi = 1.5.

Figure 6 – Bibliography results for the two-part example for Case #2 and comparison with the results
obtained by the augmented approach (in brackets).

Table 3 – Input probabilistic model for the two-part example.

Variable Distribution Mean shift Std

X1 Normal δ1 uncertain σ1 uncertain
X2 Normal δ2 uncertain σ2 uncertain
∆1 Uniform −δ

(max)
1 δ

(max)
1

Σ1 Uniform σ
(min)
1 σ

(max)
1

∆2 Uniform −δ
(max)
2 δ

(max)
2

Σ2 Uniform σ
(min)
2 σ

(max)
2
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4.2 Simulation results
Table 4 – Simulation results for the two part example.

Cpi = 2 Cpi = 1.5
Ref. [4] 33 ppm 51 ppm

Estimate Var # g-calls Estimate Var # g-calls

Nested APTA 34 ppm 4×10−15 106 FORM 54 ppm 4×10−15 106 FORM

Augmented FORM 38 ppm − 436+436 = 872 62 ppm − 476+176 = 652
Augmented Multi-FORM [16] 38 ppm − 462+540 = 1002 62 ppm − 176+202 = 378
Augmented SS 34 ppm 1×10−10 10173 53 ppm 1.8×10−10 10152

Table 4 illustrates both reference results from the original article [4] and simulations obtained by Nested
APTA (i.e. Nested FORM) to find the original results again. Then, results obtained by the augmented
approach coupled to three reliability methods to estimate the defect probability are proposed with their
respective number of calls to the limit-state function. The mean estimate and the variance of the esti-
mation are provided. These statistical results have been obtained by averaging a hundred replicates of
the different algorithms.

One can see that traditional Nested APTA requires 106 FORM analyses (i.e. around 24× 106 g-calls)
to get the same results as those of reference [4]. On the one hand, all the methods give accurate results
even if the Augmented FORM and the Augmented Multi-FORM overestimate the defect probability.
On the other hand, all the augmented-based approaches seriously challenge the original Nested APTA
since only a very small number of code evaluations is required. The sums which appear in the “# g
calls” columns correspond to the sum of the number of calls for each failure point corresponding to the
two hyperplanes.

This test-case reveals how efficient the formulation of some classical reliability approaches (FORM,
Multi-FORM and Subset Simulations) is in terms of number of calls to the limit-state function (which
is directly linked to the computational cost) and in terms of accuracy.

5 Conclusion
This paper deals with the problem of estimating a defect probability in statistical tolerancing problems.
The major issue remains the fact that one has to face a bi-level uncertainty. Indeed, part manufacturing
implies that part dimensions vary intrinsically, but statistical process parameters (mean shift value and
standard deviation) also vary from one batch to another. Thus, the defect probability estimation has
to take these two uncertainty levels into account. This paper proposes to couple an efficient Bayesian
sampling strategy, the augmented approach, and an existing method in literature, APTA, for estimating
defect probability in tolerance analysis problems. The application of the methodology on an academic
test-case demonstrated numerical accuracy of the coupling strategy compared to the traditional nested
estimation using the original version of APTA.

A future research track consists in extending this work to problems involving a nonlinear tolerance
chain function. Another track could be to derive and estimate some sensitivities w.r.t. the statistical
process parameters. These perspectives are left for future research.
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[28] A. Nataf. “Détermination des distributions dont les marges sont données”. Comptes Rendus de
l’Académie des Sciences 225 (1962). (in French), pp. 42–43.

[29] M. Rosenblatt. “Remarks on a Multivariate Transformation”. Annals of Mathematical Statistics
23.3 (1952), pp. 470–472.

[30] J.-M. Bourinet, C. Mattrand, and V. Dubourg. “A review of recent features and improvements
added to FERUM software”. Proc. of the 10th International Conference on Structural Safety and
Reliability (ICOSSAR’09). Osaka, Japan, 2009.


