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Abstract :

In this work, we propose an algorithm that combines the Method of Fundamental Solutions (MFS) with
the Asymptotic Numerical Method (ANM) for solving nonlinear elasticity problems. The ANM allows
one to transform the nonlinear differential equations into a sequence of linear differential equations
having the same tangent operator. Each linear resulting problem is then solved by using MFS. This last
technique belongs to meshless collocation methods which has attracted considerable attention in re-
cent years. It consists in constructing the solution by considering a linear combination of fundamental
solutions of the differential operator. Regularization methods such as Truncated Singular Value Decom-
position (TSVD) associated with the Generalized Cross Validation (GCV) criterion have been used to
solve the ill-conditioned resultant linear systems. Two examples of nonlinear elasticity problems have
been studied and have shown the robustness of the proposed algorithm.
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1 Introduction
In this work, we propose to combine the Asymptotic Numerical Method (ANM) and a meshless tech-
nique based on the Method of Fundamental Solutions (MFS) for solving nonlinear elasticity problems.
The ANM is considered as an efficient tool to solve nonlinear partial differential equations without need
of any iteration procedure. It consists in expanding the variables into Taylor series that are truncated at
rather large orders. This allows one to transform the nonlinear problem into a sequence of linear ones
and to obtain a large part of the solution branch. Furthermore, as the step length is limited by the con-
vergence radius of the series, a continuation procedure is performed to obtain the whole solution branch
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in a step by step manner. Many applications have established the robustness of this method for non-
linear solid and fluid mechanics, nonlinear vibrations, contact, large displacements and large rotations,
plasticity and other fields in physics [4, 5, 6, 7].

Generally, the resulting linear problems issue of the perturbation technique are solved by using finite
element method. Recently ANM technique has been associated to meshless methods and particularly
to the method of fundamental solutions [1, 2, 3]. This method belongs to collocation techniques and
does not require meshes as for finite element method. Due to its simplicity of implementation, the
MFS seems to be a more and more attractive tool to solve linear and nonlinear differential equations
in many computational mechanics area. Introduced first by Kupradze and Aleksidze [8], the MFS has
been proven also to be a very efficient method to study some linear elasticity problems. Indeed, the linear
elasticity Cauchy problem is discussed in [11] and the non-homogeneous linear elasticity equations are
treated in [10]. In reference [12], Marin et al. have employed MFS with regularization techniques to
study the inverse boundary value problems in three dimensional steady state linear thermo-elasticity.
Moreover, the MFS has been extended to solve some nonlinear problems in many engineering fields.
It was mainly combined with classical iterative methods as Newton–Raphson one or variants [20, 21,
22, 23, 24]. In references [1, 2], authors have coupled MFS with ANM for solving nonlinear problems
and for analysis of bifurcation in [3]. However, only a few researchers have investigated Method of
Fundamental Solutions MFS to solve nonlinear elasticity problems. Among them, we note the works of
Naffa et al. [25, 26] which have used an iterative method associated with Radial Basis Functions (RBF)
to solve the nonlinear differential equations governing large deflection of thin plates.

To our knowledge, the MFS has not been yet applied to a nonlinear elasticity problems. For that, we pro-
pose in this work to extend it for solving nonlinear elasticity problems involving large deformations by
conjunction with ANM. The regularization based on Truncated Singular Value Decomposition (TSVD)
[13, 14] is employed to solve the ill-conditioned resultant linear system while the regularization param-
eter is chosen by the Generalized Cross Validation (GCV) criterion [15].

The layout of this paper is as follows. In section 2, the mathematical formulation for large deformation
problems in 2D elastostatic framework is given. The description of ANM is presented in section 3.
Spatial discretization using MFS is discussed in section 4 and in section 5, we illustrate briefly the
regularization method and selection criteria. On the other hand side, numerical examples involving
large deformation problems are provided to show the efficiency and accuracy of the proposed algorithm.

2 Governing equations
This section presents the basic equations of nonlinear elasticity in strong form. The nonlinear elasticity
is an important nonlinear problem in computational mechanics. The strong form of the boundary value
problem for two-dimensional nonlinear elasto-static is as follows:

{γ} = ([II] + 1
2 [A(θ)]){θ} in Ω

{S} = [D]{γ} in Ω

{Π} = ([III] + [B(θ)]){S} in Ω

[div] {Π} = {0} in Ω

[N ] {Π} = λ{T d} in ∂Ωf

{U} = λ{Ud} in ∂Ωu

(1)
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The open set Ω ⊂ R2 with smooth boundary ∂Ω represents a bounded reference configuration for the
continuum body. The boundary ∂Ω is decomposed into two parts ∂Ωu and ∂Ωf . The displacements
{Ud} is prescribed on ∂Ωu and the traction {T d} is prescribed on ∂Ωf that gives the intensity of the
applied load. The components of outward unit normal vector are regrouped in the matrix [N ] and λ
is a scalar parameter. In the case of large deformations, {γ} represents the Green–Lagrange strain
tensor which is expressed versus the deformation gradient {θ}. In the nonlinear elasticity theory, the
Lagrangian description is the most formulation used for this kind of problems which permits to deter-
mine the exact transformation between the reference and current configurations. {Π} and {S} represent
respectively the 1st and 2nd Piola-Kirchhoff stress tensors which are used to express the pseudo-stress
relative to the reference configuration. The constitutive matrix [D] for a homogeneous and isotropic
elastic material is written as follows:

[D] =
E

1− ν2

 1 ν 0

ν 1 0

0 0 1−ν
2

 (2)

were E = E, ν = ν for the plane stress condition and E = E/(1− ν2), ν = ν/(1− ν2) for the plane
strain condition, E and ν are respectively the Young’s modulus and the Poisson’s ratio. The matrices
[A(θ)], [B(θ)], [III] and [II] are given by:

[A(θ)] =

 U1,1 0 U2,1 0

0 U1,2 0 U2,2

U1,2 U1,1 U2,2 U2,1

 ; [B(θ)] =


U1,1 0 U1,2

0 U2,2 U2,1

0 U1,2 U1,1

U2,1 0 U2,2

 ;

[II] =

 1 0 0 0

0 0 0 1

0 1 1 0

 ; [III] =


1 0 0

0 1 0

0 0 1

0 0 1


(3)

The quantitiesU1 andU2 represent the components of the displacement vector {U} andUi,j indicates the
derivative of the component Ui with respect to jth variable. The system of equation (1) is nonlinear and
therefore requires linearization algorithms. Among these algorithms, we find the iterative incremental
methods which are very expensive in computation time. In this work, algorithms based on the ANM are
other alternatives for solving nonlinear equations such as system (1). These algorithms are explained in
detail in the next section.

3 High order algorithm
The high order algorithm, often known as ANM (Asymptotic Numerical Method) in the literature, is
a numerical solver for nonlinear equations. The conventional tangent approximations are replaced by
power series truncated to a high order. The ANM transforms the problem (1) into a sequence of linear
problems which are solved using a meshless method such that MFS. The use of the asymptotic expan-
sion requires to write the system (1) in a quadratic form. Some details of this procedure are given in
the reference [16]. We use the mixed vector {U} = {{Π}, {S}, {γ}, {θ}, {U}} which represents the
fundamental physical fields of the problem. The variables {U} and λ are developed using an asymptotic
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expansion truncated at order P with respect to a path parameter "a" in the neighborhood of a known
starting solution ({U0}, λ0). Thus, we can write:

{
{U}
λ

}
=

{
{U0}
λ0

}
+

P∑
i=1

ai

{
{Ui}
λi

}
(4)

By introducing eqn (4) into eqn (1) and equating like powers of "a", we obtain the following set of linear
mixed problems:

• Order 1 

{γ1} = [F (θ0)]{θ1}
{S1} = [D]{γ1}
{Π1} = [H(θ0)]{S1}+ [Ŝ0]{θ1}
[div] {([F (θ0)][D][H(θ0)] + [Ŝ0]){θ1}} = {0}
[N ] {([F (θ0)][D][H(θ0)] + [Ŝ0]){θ1}} = λ1{T d}
{U1} = λ1{Ud}

(5)

• Order 2 ≤ k ≤ P

{γk} = [F (θ0)]{θk}+ {γnlk }
{Sk} = [D]{γk}
{Πk} = [H(θ0)]{Sk}+ [Ŝ0]{θk}+ {Πnl

k }
[div] {([F ][D][H] + [Ŝ0]){θk}} = −[div]{[F ][D]{γnlk }+ {Πnl

k }}
[N ] {([F ][D][H] + [Ŝ0]){θk}} = λk{T d} − [N ]{[F ][D]{γnlk }+ {Πnl

k }}
{Uk} = λk{Ud}

(6)

where [F (θ0)] = [II] + [A(θ0)], [H(θ0)] = [III] + [B(θ0)], {γnlk } =
1

2

∑k−1
r=1 [A(θr)]{θk−r} and

{Πnl
k } =

∑k−1
r=1 [B(θr)]{Sk−r}. The term [B(θi)] {S0} is transformed to [Ŝ0] {θi} to reveal the un-

known {θi}; with the matrix [Ŝ0] contains the stress of the starting solution defined as:

[Ŝ0] =


S0
11 S0

12 0 0

0 0 S0
12 S0

22

S0
12 S0

22 0 0

0 0 S0
11 S0

12

 (7)

where the termsS0
ij are the components of the second stress tensor. In this formulation, only the displace-

ment vector is discretized. For this, a substitution method is used to condense the different equations
(6.a), (6.b) and (6.c) into equilibrium ones (6.d) and (6.f). Note that the set of equations (6.d) , (6.e) and
(6.f) is a system of linear equations having the same tangent matrix for all the orders depending on the
starting geometry and stress {θ0} and {S0}. This procedure involves calculating the term of order P of
the series (4) versus previous orders. An additional equation called the auxiliary equation must be added
to define the path parameter "a". This path parameter "a" can be defined in three different ways: either
as the load increment (λ− λ0), or as a component of the displacement increment ({U} − {U0}) or an
arc length [17]. However, this last case is very used when the branch presents limit points. According
this idea, we can identify the path parameter "a" as follow:
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a = 〈({U} − {U0}), {U1}〉+ 〈(λ− λ0), λ1〉 (8)

where < ·, · > is the euclidian scalar product. The equation (8) provides an adaptative path parameter
which enables one to describe the branch. By introducing the series (4) into (8) and equating like powers
of "a", we obtain the set of single equations. Within the framework of the ANM, the series permit us
to obtain a large part of the branch solution by inverting or decomposing only once the stiffness tangent
matrix. This procedure can be considered as a high-order predictor which, generally, does not require
the correction phase. The continuation technique permits us to determine the entire branch solution [17].
Each solution branch is characterized by a starting point and a validity range [0, amax]. In this paper,
the validity range of the series representation can be estimated by a criterion defined in [16, 17] which
is expressed as a function of the truncation order P , a given tolerance ε and a right-hand side {FnlP+1}
which contains the nonlinear terms calculated at the previous orders defined in the following section.
The maximum value of the parameter "a" is defined as follow:

amax =

(
ε

‖
{
FnlP+1

}
‖

) 1

P + 1
(9)

The solution {{U(amax)}, λ(amax)} is a new starting solution for the following step. The complete
solution branch is obtained step by step via the continuation technique.

4 Meshless numerical modeling
The Method of Fundamental Solutions (MFS) is currently a useful method in numerical meshless-type
discretization techniques for solving linear partial differential equations. In the MFS, the principal un-
known {U} of problems (5) and (6) is approximated by a sum of the homogeneous and the particular
solutions. The homogeneous solution is defined as a linear combination of the fundamental solutions
in terms of source points located outside the domain. The particular solution is written in the form of
a linear combination of particular solutions in terms of collocation points. By integrating the MFS-
MPS method with the Analogous Equations Method (AEM) to reveal the linear operator of the two-
dimensional elasticity whose fundamental solution is previously known. Indeed, the system of linear
equations defined in (5) and (6) contains an operator whose fundamental solution is unknown because
of the presence of terms [A(θ0)], [B(θ0)] and [Ŝ0]. Then, these terms are eliminated in the operator and
considered as a right-hand side. In this procedure, the homogeneous (fundamental) solution is known
and corresponds to that of the linear elasticity operator. So, the particular solution is calculated using
the Dual Reciprocity Method (DRM) which uses the Radial Basis Functions (RBF) as an approximation
of the right-hand side. This allows us to write the approximation as follow:

{U(Mi)} =
∑Ns

j=1[Û
h(Mi, Qj)]

{
αhj
βhj

}
+
∑N

j=1[Û
p(Mi,Mj)]

{
αpj
βpj

}
(10)

whereQj(Xj
1 , X

j
2) andMi(x

i
1, x

i
2) are respectively the coordinates ofNs source points on the fictitious

border and the coordinates of the N collocation points. [Ûh(Mi, Qj)] represents the fundamental so-
lution matrix of the two-dimensional linear elasticity operator. This matrix is given by the following
formula [9, 11]:
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Ûhkl(rij) =
1

8πµ(1− ν)

(
−(3− 4ν)log(rij)δkl +

(xik −X
j
k)(xil −X

j
l )

r2ij

)
(11)

[Ûp(Mi,Mj)] is the matrix of particular solutions. The particular solutions are obtained using the Dual
Reciprocity Method (DRM). The procedure for obtaining these particular solutions for a right-hand side
is given in a similar way as in the BEM [19, 18]. The multi-quadric RBF type is considered and the
particular solutions are obtained analytically from this function. Thereafter, we propose to rewrite the
expression (10) in a compact form in which the matrices of the particular and homogeneous solutions
are concatenated in a single matrix [Û ] and the coefficients of linear combinations αhj , βhj , α

p
j and β

p
j

are grouped into a single vector {X} in the following form:

{U(Pi)} = [Û(Pi)]{X} (12)

By injecting the approximation (12) into the set of equations (5.d), (5.e), (5.f), (6.d), (6.e) and (6.f), we
obtain a linear algebraic system which is written as the following form:

Order 1 : [KT ] {X1} = λ1{F}
Order 2 ≤ k ≤ P : [KT ] {Xk} = λk{F}+ {Fnlk }

(13)

where the matrix [KT ] and the vectors {F}, {Fnlk } are defined by:

[KT ] =

 [div] (([F ][D][H] + [Ŝ0])[grad][Û(Pi)])

[N ] (([F ][D][H] + [Ŝ0])[grad][Û(Pi)])[
Û(Pi)

]
 Pi ∈ Ω

Pi ∈ ∂Ωf

Pi ∈ ∂Ωu

(14)

{Fnlk } =


− [div] {[F ][D]{γnlk (Pi)}+ {Πnl

k (Pi)}}
− [N ] {[F ][D]{γnlk (Pi)}+ {Πnl

k (Pi)}}
{0}


Pi ∈ Ω

Pi ∈ ∂Ωf

Pi ∈ ∂Ωu

(15)

{F} =


{0}
{T d}
{Ud}


Pi ∈ Ω

Pi ∈ ∂Ωf

Pi ∈ ∂Ωu

(16)

5 Regularization methods
The MFS system of linear algebraic equations (13) is ill-conditioned. This implies that the standard nu-
merical methods for solving this system are not effective. Generally, the resolution of the ill-conditioned
linear system requires a particular processing in order to minimize its sensitivity to disturbances whence
the regularizationmethods find their utility for the resolution of this kind of problem. The Singular Value
Decomposition (SVD) is a fundamental tool for studying the conditioning of the matrix [KT ]. This tech-
nique is applied in the regularization method TSVD and in the Tikhonov method. In this paper, we use
the TSVD regularization [13, 14] which consists in truncating the decomposition into singular values
of the matrix [KT ]. The small singular values of [KT ] are eliminated and searched the solution that
minimizes the least square of the system (13) which is written as follow:
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{Xη
i } =

∑η
r=1

< Λr > {bi}
sr

{wr} , 1 < η < m (17)

where m is the rank of the matrix [KT ], η is the truncation parameter and the vector {bi} = λi{F} +

{Fnli } represents the right-hand side of the system (15). The SVD decomposition of the matrix [KT ] is
written as:

[KT ] = [Λ][Σ][W ] =
∑m

i=1 si{Λi} < wi > (18)

The matrices [Λ] and [W ] are orthogonal; with {Λi} and {wi} are the ith columns respectively of [Λ]

and [W ], [Σ] is a diagonal matrix containing the singular values si strictly positive such that s1 > s2 >

· · · > sm > 0.

One of the difficulties of regularization methods remains in the choice of the optimal parameter values η.
We proposed to couple the GCV criterion with the TSVD regularization for determining this parameter.
The GCVmethod [15] is an empirical method and it is very simple to implement. It consists in searching
for the regularization parameter η which minimizes the following function:

υ(η) =
‖[KT ]{Xη

i } − {bi}‖
tr([I]− [KT ][KT ]T )2

(19)

6 Numerical results and discussions

6.1 Example 1: Bending of thin plate
In this example, we are interested to the resolution of nonlinear bending problem of a thin plate of
length L = 100mm, width l = 10mm, made of a homogeneous, elastic and isotropic material of
Young’s modulus E = 10000MPa and Poisson’s ratio ν = 0.3. The plate is embedded from its left
end and subjected to a bending loading {T d} = T 〈0 T d2 〉; with (T d2 = 1MPa) at the other end (see
figure 1).

L = 100 mm

l = 10 mm

E = 10000 MPa

= 0.3

L

l

T2
d

Figure 1: Thin plate under bending load

For numerical data, we take N = 467 collocation points arbitrarily distributed on the domain occupied
by the plate (see Figure 2) andNs = 113 source points on the fictitious boundary. The fictitious bound-
ary is considered as a circle of radius R = 70mm and of center (x = 50, y = 0) which is the mass
center of the plate. After several numerical tests, the optimal parameters of high order algorithm are
chosen as: the truncation order P = 15 and the tolerance ε = 10−6. The numerical analysis is based on
the evolution of displacements of nodes P1 and P2, represented in figure 2, versus load parameter λ.

In figure 3, we represent the displacements of nodes P1 and P2 with respect to load parameter λ. These
response curves of the nonlinear bending problem is obtained by the both algorithms using the MFS
and FEM methods. These results show a good agreement between the both algorithms. The proposed
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Figure 2: Distribution nodes and the normal vector at each point of the boundary ∂Ω

algorithm requires five ANM-steps as shown in figure (3) i.e. five inversions of the tangent matrix to get
the bending up to the value U2 = 78.8mm for the value of λ = 91, 04.

0

20

40

60

80

100

-60 -40 -20 0 20 40 60 80

DISPLACEMENT

P2
P2

P1

P1

FEM + ANM

MFS + ANM

MFS + ANM

FEM + ANMU2

U1

U1

U2

Figure 3: Load-displacement curve to the nodes P1 and P2

In this example, we use the regularization TSVD associated with the GCV criterion in order to reduce
the hypersensitivity of the conditioning number.

6.2 Example 2: Buckling of thin plate
This example concerns the buckling of a thin plate simply supported at these both ends and subjected to a
compressive load {T d} = T 〈T d1 0〉; with (T d1 = 1MPa) applied at its left end and a perturbation load
{T d} = T 〈0 T d2 〉 applied at the other end as shown in figure 4. The perturbation load is introduced
in order to follow the bifurcated curve. The considered structure is of length L = 100mm, width l =

10mm, made of a homogeneous, elastic and isotropic material of Young’s modulus E = 10000MPa

and Poisson’s ratio ν = 0.3. We adopt the same numerical data as in the first example. In this case, the
results are recorded at the node P2.

L

l

L = 100 mm

l = 10 mm

E = 10000 MPa

= 0.3

T2
d
= 0.01 T1

d

T
1

d

Figure 4: Buckling of a thin plate

In figure 5, we present the evolution displacements of node P2 versus the load parameter λ. From
these results, we conclude the same remarks as in the first example. The proposed algorithm requires
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17 ANM-steps because this problem is complicated than those of the first example.
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U2

U2
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Figure 5: Load-displacement curve of the node P2

7 Conclusion
We have proposed, in this study, a numerical model which consists in coupling the ANM algorithm
with meshless method to simulate the nonlinear elasticity problems. The meshless method used her is
the Method of Fundamental Solutions (MFS) which is the true meshless method and have the concept
of collocation approach. The obtained result illustrate the effectiveness of the proposed algorithm. In
addition, we have used the TSVD regularisation associated with GCV criterion to overcome the difficulty
associated with ill-conditioned linear system.
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