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Résumé :

Dans ce papier, nous proposons une procédure pour estimer les propriétés élastiques des composites

constitués de deux phases, matrice et inclusion. Une classe d’équation intégrale basée sur polarization a

été construite. Chaque équation intégrale de cette classe peut produire une estimation du tenseur effectif

par developpement de series de Neumann. La meilleure estimation est choisie en se basant sur la critere

de convergence, c.a.d le rayon spectral doit être minimisé. La série optimisée converge pour tout rapport

de contrast et l’application à différentes microstructures donne les résultats satisfaisants.

Abstract :

In this paper, we propose a new systematic procedure of estimating elastic properties of composites

constituted of two phases, matrix and inclusions. A class of integral equations based on eigenstrain

(or eigenstress) with the matrix as reference material is constructed with an explicit form in Fourier

space. Each integral equation belonging to this class can yield estimates of the overall elastic tensor

via Neumann series expansion. The best estimates and series are selected based on the convergence rate

criteria of the series, i.e the spectral radius must be minimized. The optimized series is convergent for any

finite contrast between inclusions and matrix. Applying the optimized series and the associated estimates

to different microstructures yields very satisfying results when compared with the related full solution.

For the case of a random distribution of spherical inclusions, exact relations between the elastic tensor

and n−th order structure factors are demonstrated.

Mots clefs : Strong contrast expansion, optimally convergent Neumann se-
ries, effective elastic tensors

1 Introduction

We consider the problem of finding the effective stiffness tensor Ce of periodic heterogeneous martrix-

inclusion materials. Given the distribution of the constituents, the cell problem must be solved first and

the linear relation between average stress and strain is then established. Estimates can be obtained by

making relevant approximation to the ingredients constituting the effective tensor. Although the present

contribution concerns the theory of optimally estimating Ce from the microstructure, it is closely related
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to FFT numerical homogenization methods.

By introducing a reference material C0, the heterogeneity effect can be viewed as a distribution of eigens-

trains within an homogeneous material. Using the related Green tensor, our problem can be formulated

as a Lippmann-Schwinger equation for eigenstrain. The integral equation is the origin of resolution me-

thods based on iteration and Fast Fourier Transform (FFT) techniques [1,6]. Significant progresses have

been made regarding the improvement of convergence rate [3, 4, 6–8]. The study of convergence rate

in those works will be extended in the present contribution in the case of new integral equations. The

iteration scheme used to solve the Lippmann-Schwinger equation corresponds to the Neumann series

summation. The latter can be used to derive exact theoretical relations and estimates. In this paper, we

propose a new estimate based on series expansion that works at all contrast ratio, while using the matrix

as a reference material. Additionally, we can control and optimize the convergence rate so that the series

converges in the quickest way, and therefore produces the best estimates when using a finite sum in the

series expansion. A class of integral equations for eigenstrain is derived and the spectral radius and norm

of the corresponding operators are estimated. Different optimization methods are proposed to find the

fastest series convergence and the associated estimates.

Similarly to the estimations of the effective elasticity tensor using correlation functions, the new method

presented in this paper allows to estimate the effective elasticity tensor using the n− order structure fac-

tors, which represent the counterpart in Fourier space of correlation functions. As an example, a direct

connection of the effective elasticity tensor to n−th order structure factors is given in the case of ran-

domly distributed spheres. Numerical applications for cubic arrays and random distribution of spheres

yield very good results in comparison with FFT based methods and other results from the literature.

2 Theoretical formulation

2.1 Notations and mathematical preliminaries

Most of our calculations involve symmetric second order tensors and fourth order tensors with minor

symmetries. Unless specified, two tensors standing next to each other implies their double contraction

product. We are also dealing with periodic functions using Fourier analysis. Any V (a1, a2, a3)−periodic

tensor field u, function of coordinate x(x1, x2, x3) can be expressed as an infinite Fourier series

u(x) =
∑

ξ

u(ξ)eiξ.x, u(ξ) =
1

V

∫

V

u(x)e−iξ.xdx (1)

with u(ξ) being the Fourier transform of u(x) and ξ(ξ1, ξ2, ξ3) the wave vector

ξi =
2πni

ai
, i = 1, 2, 3, n1, n2, n3 ∈ Z (2)

In the paper, we will encounter frequently equations in the form

u = U + Bu, [Bu](ξ) = B(ξ)u(ξ) (3)
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for a given second order tensorial function U(x) and fourth order tensorial operator B. The solution u

of the above equation is the following Neumann series

u =

∞
∑

n=0

B
nU . (4)

The convergence rate of the Neumann series (or the iterative scheme) can be estimated from the spectral

radius or the norm of the associated operator B. In the case where A(ξ) is a transverse isotropic tensor

in Fourier space, it can be represented as

B = b1E1 + b2E2 + b3E3 + b4E4 + b5E5 + b6E6, (5)

with E1,E2, ..,E6 being the Walpole base elements [13] defined as

E1 =
1

2
k⊥ ⊗ k⊥, E2 = k⊗ k, E3 = k⊥⊗k⊥ − E1,

E4 = k⊥⊗k+ k⊗k⊥, E5 = k ⊗ k⊥, E6 = k⊥ ⊗ k,

k = ξ ⊗ ξ, k⊥ = I − k, (6)

The spectral radius ρ(B) and the norm ‖B‖ can now be computed with the formula

ρ(B) = max

{

|b3|, |b4|,
1

2
|(b1 + b2)±

√

(b1 − b2)2 + 8b5b6|

}

.

‖B‖ =
√

ρ(B†B) = max

{

|b3|, |b4|,
1

2
[
√

(b1 − b2)2 + 2(b5 + b6)2+

+
√

(b1 + b2)2 + 2(b5 − b6)2]
}

. (7)

2.2 Integral equations for eigen stresses

We consider a heterogeneous two-phase material where the local isotropic stiffness is either matrix C0

(elastic constants κ0 and µ0, compliance S0) or inclusion Ci (elastic constants κi and µi, compliance

Si) is a V−periodic function of the coordinates x. Using the matrix C0 as reference material, we have

σ = C
0ǫ+ τ , ǫ = S

0σ + e, (8)

where the eigenstress τ and the eigenstrain e have been introduced. Using the characteristic function

χ(x), χ = 1 for matrix and χ = 0 for inclusion, the integral equation for the eigenstress τ may be

expressed as :

τ = χδC(E − Γ
0 ∗ τ ), δC = C

i − C
0 (9)

and the dual integral equation for the eigenstrain e

e = χδS(Σ −∆
0 ∗ e), δS = S

i − S
0. (10)
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The Green operators Γ0 and ∆
0 for strain and stress are defined in Fourier space by :

Γ
0(ξ) =

3

3κ0 + 4µ0

E2 +
1

2µ0

E4 ∀ξ 6= 0, Γ
0(0) = 0,

∆
0(ξ) =

18µ0κ0
3κ0 + 4µ0

E1 + 2µ0E3 ∀ξ 6= 0, ∆
0(0) = 0, (11)

where ξ is the wave vector and the tensors Ei are defined in Fourier space from the Walpole base. The

elastic constants κ0 and µ0 appearing in (11) are respectively the bulk modulus and the shear modulus

associated to the reference tensor C0.

From the two elementary integral equations, we can construct a family of integral equations for τ (or e

equivalently) by linear combination. Using two tensors L and I− L, we can obtain

τ = χAE + χBτ , (12)

in which

A = ((I − L)(δC)− LC
0(δS)Ce)

B = −((I− L)(δC)Γ0 + LC
0(δS)∆0

S
0). (13)

The solution to the above equation is the Neumann series τ = χ
∑∞

n=0
(Bχ)nE and the convergence

rate of Neumann series depend on the spectral radius of Bχ. Next we are limited to the case where

L = 2αK+ 3βJ (14)

where α and β are two constants. Noting that ρ(χ) = |χ| = 1 and that B is transversely isotropic tensor

in Fourier space, we propose three methods of finding α, β to obtain the best convergence rate

- Optimizing the spectral radius of B (OR)

- Optimizing the norm of B (ON)

- Optimizing directly the spectral radius of Bχ (OD)

The first two methods can be done using the results on ρ(B) and |B| in the previous sections. The final
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Figure 1 – Isolines of spectral radius ρ(B) (left) and norm ‖B‖ (right) as functions of α and β. The

results are obtained for two materials with the following parameters ν1 = 0.4, ν0 = 0.3, µ1/µ0 = 3. The

optimal values by the two methods are respectively (α, β) = (0.355, 0.298) and (α, β) = (0.309, 0.349)
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method leads to the result

2α = εm/(εm + 1), 3β = εk/(εk + 1), εm = µi/µ0, εk = κi/κ0 (15)

and the expressions for A and B as follows

A =

[(

3
εk − 1

εk + 1
κ0J+ 2

εm − 1

εm + 1
µ0K

)

+

(

εk − 1

εk + 1
J+

εm − 1

εm + 1
K

)

C
e

]

,

B =

(

εk − 1

εk + 1
J+

εm − 1

εm + 1
K

)(

E1 − E2 + E3 − E4 −
2(3κ0 − 2µ0)

3κ0 + 4µ0

E6

)

. (16)

It can be shown that using the OD method, we can guarantee that

ρ(Bχ) ≤ max

{∣

∣

∣

∣

εm − 1

εm + 1

∣

∣

∣

∣

,

∣

∣

∣

∣

εk − 1

εk + 1

∣

∣

∣

∣

}

(17)

Case α β
OR ON OD OR ON OD

ν1 = ν0 = 0.3 0.0040 - 0.0031 0.0050 0.0027 -0.0012 0.0033

µ1/µ0 = 0.01

ν1 = 0.1, ν0 = 0.3 0.0525 -0.0215 0.0528 0.0430 0.0037 0.0159

µ1/µ0 = 0.1

ν1 = 0.4, ν0 = 0.3 0.923 -1.000 0.250 0.259 0.353 0.228

µ1/µ0 = 1

ν1 = 0.4, ν0 = 0.3 0.355 0.309 0.375 0.298 0.349 0.289

µ1/µ0 = 3

ν1 = 0.2, ν0 = 0.3 0.455 0.453 0.454 0.281 0.347 0.287

µ1/µ0 = 10

ν1 = 0.1, ν0 = 0.3 0.496 0.496 0.495 0.325 0.337 0.326

µ1/µ0 = 100

ν1 = 0.1, ν0 = 0.3 0.500 0.500 0.499 0.333 0.334 0.332

µ1/µ0 = 1000

Table 1 – Comparison of the results α, β issued from three methods of optimization. Notations : OR

for optimization based on spectral radius of B, ON for optimization based on norm of B and OD for

optimization based on the direct estimation of spectral radius of Bχ.

2.3 Overall elastic properties

Repeating the recurrence at step n we obtain an equation for τ

τ = χ
n−1
∑

j=0

(Bχ)jAE + (χB)nτ . (18)
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Averaging both sides over the inclusion volume and making the approximation τ ≃ χ〈τ 〉Ω, we obtain

the following equation for 〈τ 〉Ω

〈τ 〉Ω ≃

n−1
∑

j=0

D
j
AE + D

n〈τ 〉Ω. (19)

in which the tensors D0,D1, .. are determined with the formulas

D
0 = 〈(Bχ)0〉Ω = I,

D
1 = 〈(Bχ)1〉Ω = f−1

∑

ξ

χ(−ξ)B(ξ)χ(ξ),

D
2 = 〈(Bχ)2〉Ω = f−1

∑

ξ

χ(−ξ)B(ξ)
∑

ξ′

χ(ξ − ξ′)B(ξ′)χ(ξ′),

...

D
j = 〈(Bχ)j〉Ω = f−1

∑

ξ1,ξ2,...,ξn

χ(−ξ1)χ(ξ1 − ξ2)...χ(ξj−1 − ξj)χ(ξ1)B(ξ1)...B(ξj).(20)

We note that the average τ over the inclusion domain 〈τ 〉Ω is connected to the effective stiffness tensor

Ce via the relation

f〈τ 〉Ω = (Ce − C
0)E. (21)

Solving (19) for 〈τ 〉Ω and substituting back into (21), we obtain a new expression for Ce

C
e ≃



(I− D
n) + f

n−1
∑

j=0

D
j
LC

0(δS)





−1 

(I− D
n) + f

n−1
∑

j=0

D
j(I− L)(δC)S0



C
0. (22)

In the case where the effective material is isotropic or at least cubic, we can extract the main shear

modulus µe and the bulk modulus κe using the expressions

µe

µ0

≃ 1 + f
(1− 2α)δµ/µ0 + 2αδµ/µ1

1−2αn∑n−1

j=0
2αj

− 2αfδµ/µ1

κe
κ0

≃ 1 + f
(1− 3β)δκ/κ0 + 3βδκ/κ1

1−3βn∑n−1

j=0
3βj

− 3βfδκ/κ1
,

µe = Ce
1212, 3κe = Ce

1111 + 2Ce
1122,

αj = Dj
1212

, 3βj = Dj
1111

+ 2Dj
1122

, (23)

From (23), it is interesting to remark that all the microstructure information is contained in the parameters
1−2αn∑n−1

j=0
2αj

and
1−3βn∑n−1

j=0
3βj

.

3 Numerical applications and analysis

Let us consider the application of our theory to a cubic array of spheres in comparison with FFT and

some literature results. From Figs. 2, 3 and Tabs. 2, 3, we find that the second order estimates have

improved significantly the Hashin Shtrikman estimate [5] which coincides with the first order estimates.

The degree of improvement depends on the properties considered, estimation scheme, microstructure
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and the elastic properties of constituents. For BCC array with contrast ratio as high as 10 (see Fig 2,

3)), the second order estimates of the bulk modulus κe/κ0 and the shear modulus µe/µ0 issued from

the three schemes are close to the FFT results at convergence. The agreement is good upto a very high

volume fraction near the percolation limit.
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Figure 2 – Normalized effective bulk modulus κe/κ0 vs inclusion volume fraction f of BCC array.

Elastic properties of the constituents are ν1 = 0.4, ν0 = 0.3, µ1/µ0 = 10. The results are computed by

first order estimates which all coincide with HS estimates, second order estimates of the three methods

(OR,ON and OD) and the numerical method FFT at convergence.

Detailed results on FCC array also have the same trend as those for BCC cases. Tables 2 and 3 show that

the two series OR and OD yield very good results while the series ON works less well. It is interesting

to note that at volume fraction as large as 0.5 and the rigidity contrast ratio as high as 100, our three

estimates perform well.

Next, we study microstructures constituted of randomly isotropic distribution of spheres. Two extreme

cases of rigid spheres and voids will be considered. Fifty sample composed of 500 non overlapping

spheres are prepared by standard Event Driven Molecular Dynamics [10]. To compute the effective

properties of the material, we shall limit to OD based estimates and final results are obtained by averaging

over the 50 samples. It may be noticed that, the iterative scheme is not theoretically convergent for

fields in void or rigid inclusions but the effective properties exist for the considered microstructures.

In this case, the expressions for µe and κe at first and second order can be used for infinite contrast.

Simulations on the systems show that the OD-2 estimate is close to the estimate of Torquato [11, 12].

For spherical voids (see Fig. 5), our second order estimate again shows a significant improvement with

respect to the first order (HS bound). The estimate is also close to Torquato’s estimate [11,12] using three

point parameters. Those results again confirm the robustness of our estimation scheme at high rigidity

contrast and high volume fraction. We note that the good performance comes from the benefit of the fast
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Figure 3 – Normalized effective shear moduli µe/µ0 vs inclusion volume fraction f of BCC array.

Elastic properties of the constituents are ν1 = 0.4, ν0 = 0.3, µ1/µ0 = 10. The results are computed by

first order estimates, second order estimates of the three methods (OR,ON and OD) and the numerical

method FFT at convergence.

convergence series and the high order correlation information.

4 Concluding remarks

In this paper, we have presented a new estimate of the overall stiffness tensor of elastic composites.

Starting from a class of Lippmann-Schwinger integral equations for eigenstress (or eigenstrain), the

optimization procedure is then carried out to find the best Neumann series, i.e those with the fastest

convergence rate. To this end, we have introduced tools to bound the spectral radius and norm of fourth

order operators in Fourier space and methods to obtain the optimal series. The series are then used to

derive estimates at different order n.

We have also shown that n− order statistical information on the microstructure, in this case corres-

ponding to the structure factors, also appear in the estimates. Numerical applications of the procedure

on some test cases show that our estimates perform very well in comparison with FFT results and those

from the literature.
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Figure 5 – Normalized effective bulk modulus κe/κ0 vs inclusion volume fraction f with random

distributions of spherical voids (µ1/µ0 = κ1/κ0 = 0). The solutions of the present work (OD-1, OD-2)

are compared with the results of [11, 12]. The first order estimates coincide with HS estimates.


