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Résumé
Cet article contribue plus généralement à une stratégie de calcul mixte analytique/numérique visant
à calculer les contraintes résiduelles apparaı̂ssant dans les bandes métaliques après le bobinage. Au
cours du refroidissement des bobines on assiste à des transformations multi-phases et à de la plas-
ticité de transformation induite. Ainsi, chaque spire de l’enroulement est soumise à une déformation
libre globale qui peut être suffisante pour générer des déformations plastiques macroscopiques. Pour
chaque spire on dérive une solution du problème d’un tube cylindrique soumis à une déformation libre
arbitraire. Les dévelopements mathématiques reposent sur l’équation linéaire inhomogène de Navier en
traitant la plasticité par l’introduction d’une déformation plastique déviatorique inconnue. Une solution
analytique est obtenue sous forme de dévelopement en série pour chaque déformation plastique testée.
Enfin, un principe énergétique permet de déterminer la déformation plastique solution du problème.
En pratique, un optimisation numérique est menée directement sur les coefficients du développement en
série de la déformation plastique.

Abstract

This paper is part of a more general mixed analytical/numerical strategy aiming at computing resid-
ual stresses of metallic strips after coiling process. Multiphase transitions and transformation induced
plasticity occur during coil cooling. Thus, each layer of coil is subjected to an overall eigenstrain that
can be sufficient to generate macroscopic plastic deformations. For each layer, a solution of the prob-
lem of an elastic-plastic hollow cylinder undergoing an arbitrary eigenstrain is derived. Mathematical
developments relies on the linear inhomogeneous Navier equation by dealing with plasticity through
the introduction of a deviatoric unknown plastic strain. An analytical solution is obtained in the form
of series expansion, for any trial plastic strain. Then, an energetic principle enables to determine the
plastic strain chosen as a solution of the problem. Practically, a numerical optimization procedure is
performed directly on coefficients of the plastic strain series expansion.

Key words :

1 Introduction
The current dynamic of steel manufacturing is to regularly develop new stronger grades enabling users to
reduce strips or profile thicknesses and thus reduce produced tonnages, which participates to the energy
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efficiency by minimizing for instance the total mass of vehicles etc. One of the major issues related to
this evolution of steel production is the forming processes that lead to serious residual stress problems
which in turn can result in instabilities such as strip buckling during rolling process or coils collapsing on
themselves. In addition to heterogeneous plastic deformations, irreversible deformations responsible for
these residual stresses are due to different phase transitions under applied loads that occur during most
forming processes. In order to establish technological strategies aimed at a better control of residual
stress fields, it is essential to understand and to simulate accurately these processes.

This paper is situated within the frame work of numerical simulation of the coiling process of steel.
Plastic deformations along with multi-phase transitions are responsible for large irreversible strain lead-
ing to major residual stress issues. A non-linear mixed analytical/numerical approach has been recently
proposed [1] in order to compute residual stresses generated by different contributions of inelastic eigen-
strain occurring during the coiling process (including both the winding phase and the cooling phase). In
particular, transformation induced plasticity has been taken into account following the recent work [2]
based on the classical Leblond’s model [3, 4, 5, 6]. The mixed analytical/numerical approach [1] con-
sists for each time step in applying the overall inelastic eigenstrain (depending on the previous time step)
by solving analytically the inhomogeneous Navier equation in each layer of the coil. Contact pressures
are updated by numerical optimization. The analytic solution relies on a series expansion of the right
side term of the inhomogeneous Navier equation. A specific function basis has been introduced obtain
simple identification of the solution. The homogeneous solution is more classically obtained by using
harmonic potential theory as exposed in [7] and bi-harmonic potentials as in [8].

Even though non-linear contributions such as microscopic plasticity have been taken into account,
macroscopic plasticity has been neglected, that is to say that the macroscopic von Mises equivalent
stress does not reach the macroscopic yield stress. However, macroscopic plasticity may occur if the
yield stress has already been reached during the winding phase of the process, for rather thick strips
for instance. Thus, this paper is an attempt to introduce, under simplifying assumptions, macroscopic
plasticity by adding an unknown deviatoric contribution to the imposed eigenstrain. Then, an energetic
approach is used to identify this plastic contribution. It consists in minimizing the total stored elastic en-
ergy plus the plastic dissipation associated to the plastic strain tensor introduced in the eigenstrain. This
plastic contribution can be interpreted as a distance (or a cost) between different states [9, 10]. Thus, the
energetic approach consists in seeking the lowest energy state by taking into account the cost by terms of
dissipation distance. The proposed solution combines analytical developments for the inhomogeneous
Navier equation and numerical optimizations for the identification of the plastic strain tensor.

2 Decomposition of the problem
In this contribution only one layer is considered, the problem of the determination of contact pressures
being addressed in [1]. For each time step the body is subjected to an imposed eigenstrain computed
on the basis of the extended Leblond’s model [2]. This contribution focuses only on one time step and
solves semi-analytically the problem of an elastic-plastic tube subjected to an arbitrary eigenstrain under
axi-symmetrical assumption as proposed in [1]. Even though a non-linear behavior is considered, the
proposed strategy relies on linear solutions. Indeed, the linear inhomogeneous Navier equation is solved
for any unknown trial plastic strain εp (where p stands for plastic). The latter is determined in the end
by minimizing the sum of the elastic energy E [εp] and the plastic dissipation D [εp] associated to εp.
Therefore, the problem can be decomposed into sub-problems as shown in figure 1 and the plastic strain
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considered as solution denoted by εp,s (where s stands for solution) is numerically determined by:

εp,s = argmin
εp, tr εp=0

E [εp] +D [εp] (1)

Figure 1: Decomposition

3 Mathematical preliminaries
This section deals with mathematical definitions needed for the proposed solution. The following func-
tions are proposed for expanding several functions arising in the paper into series:
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vanishes at r = rinf and rsup. Thus, if functions that do not vanish at these points are considered one
should add for instance Jα (r/rsup) and Yα (r/rsup) to the vector space in order to have non-vanishing
values at r = rinf and r = rsup. Thus the vector space on which most functions arising in the following
will be projected reads:
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r
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Let f : (r, z) ∈ [rinf , rsup]× [−L,L] 7→ f(r, z) be a function sufficiently regular so that scalar products
(4) are well defined, one can write for all α ∈ R by first expanding f(r, z) into a Fourier series along the
z-direction and then by projecting all r-dependent Fourier coefficients denoted by fk(r) on the vector
space A(α):
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where the Fourier coefficients according to the z-direction are:
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4 Inhomogeneous problem A
The first problem is a tube subjected to the imposed eigenstrain ε∗. Boundary conditions are not spec-
ified, that is to say that only a particular solution of the inhomogeneous Navier equation is sought re-
gardless of surface traction T . The obtained stress field is denoted by σ∗ and the traction vector σ∗.n

will be corrected by adding the homogenous solution of the problem C. The solution of problem A is
already addressed in [1]. Main results are stated here for sake of clarity. The inhomogeneous Navier
equation reads:

µ∆ u∗ + (λ+ µ)∇div u∗ = div (λtr (ε∗) I + 2µε∗) (11)

Hence, considering the axi-symmetrical assumption:
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where: 
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r (r, z) = (λ+ 2µ)
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Then by using the procedure described in section 3, following series expansions are considered:
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where coefficients Ar
k, Az

k, Br
k, Bz

k , Cr
m,k, Cz

m,k, and Dz
k are explicitly computed as functions of the

imposed eigenstrain ε∗ following the procedure detailed in section 3. It should be noted that f∗
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and the partial derivative of f∗
z (r, z) with respect to r have been expanded. Since the link between ε∗

and f∗
r (r, z), f

∗
z (r, z) is not essential in this contribution, details are omitted and the reader is simply

referred to [1]. However, it should be mentioned that numerical derivations of the imposed eigenstrain
are necessitated. A particular solution of the inhomogeneous Navier equation is sought as follows:
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A particular displacement field u∗r, u
∗
z , solution of the inhomogeneous Navier equation (12) has been

established. Therefore the associated stress field σ∗ can be computed as well, using the isotropic behav-
ior. More precisely, a Fourier series expansion of σ∗ is obtained since the displacement field is known
as a Fourier series expansion.

5 Inhomogeneous problem B
The second problem is similar to the problem B. A tube subjected to the unknown deviatoric plastic
strain εp is considered. For the previous problem A, the relationship between f∗

r (r, z), f
∗
z (r, z) and the

imposed eigenstrain ε∗ is purely numerical, since ε∗ is known. One could directly consider the series
expansion of f∗

r (r, z), f
∗
z (r, z) without referring to ε∗. However, in this section the plastic strain εp is

unknown and should be determined through (1) in the end. The proposed minimization is done directly
on εp and not on the right side term of the inhomogeneous Navier equation denoted by fp

r (r, z), f
p
z (r, z).

Therefore one should consider a series expansion of εp instead of fp
r (r, z), f

p
z (r, z) and solve the inho-

mogeneous equation.

The unknown plastic strain εp is deviatoric. Therefore, it remains three independent components, namely
εprr, εpθθ and εprz . In this contribution, an approximate solution is obtained by introducing an assumption
so that the number of independent components is reduced to two. Considering applications to coiling
process, shear stresses are much smaller than other components and can be neglected in the plastic strain,
thus εprz ≃ 0. Therefore considering deviatoric plastic strain (i.e., εpθθ = −εprr−εpzz), the inhomogeneous
Navier equation associated to the problem B reads:
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fp
r (r, z) = 2µ

(
∂εprr
∂r

+ 2
εprr
r

+
εpzz
r

)
fp
z (r, z) = 2µ

∂εpzz
∂z

(21)

Following ideas developed in section 3 the right side term of the Navier equation is expanded into series:
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where G
(α,β)
m is defined by (2) and where fp

r (r, z) and the partial derivative of fp
z (r, z) with respect to

r. As mentioned above, series expansion of the plastic strain should be obtained in order to write the
plastic dissipation. Following expressions are solutions of (21) considering that the right side terms are
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given by (22):
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Right side terms fp
r (r, z) and fp

z (r, z) are expressed as Bessel functions of the first and zero orders
respectively alike f∗

r (r, z) and f∗
z (r, z) in (14). It should be noted that coefficients ap,rk , bp,rk , cp,rm,k and

ap,zk , bp,zk , cp,zm,k are determined in section 7 through a minimization procedure according to (1). Displace-
ments upr and upz are sought in the form:
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Where for k > 0 (clearly Dp,z
0 = 0 hence W p,z
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By inserting (26) into (20) and identifying, one obtains:(
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where Sk and S
(β)
m,k are defined by (18) and (19). A particular displacement field upr , u

p
z , solution of the

inhomogeneous Navier equation (20) has been established. Therefore the associated stress field σp can
be computed as well, using the isotropic behavior. More precisely, a Fourier series expansion of σp is
obtained since the displacement field is known as a Fourier series expansion.
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6 Homogeneous problem C
In this section additional homogenous solutions are derived in order to verify boundary conditions.
Indeed only particular solutions of the inhomogeneous Navier equation have been exhibited so far, re-
gardless of the surface traction denoted by T . Thus the surface traction considered in this section is
T tot = T − σ∗.n − σp.n as shown in figure 1. This part of the solution is classically obtained by
using harmonic potential theory and bi-harmonic potentials. The problem being solved in this section
is a simple tube subjected to the surface traction T tot(rinf ) and T tot(rsup) at the inner and outer radii
respectively with neither body forces nor imposed eigenstrain. This part of the solution is identical to
those derived in [1] and similar to those presented in [8]. Classic harmonic and bi-harmonic potentials
are used as exposed in [7]. One can mention that an hypercomplex potential formulation [11] could
also have been used. Details are not exposed in this contribution since the originality of the present
work relies more on the determination of the unknown plastic strain by minimization procedures. Thus,
displacement and stress fields û and σ̂ are assumed to be known for each set of tested coefficients
ap,rk , bp,rk , cp,rm,k and ap,zk , bp,zk , cp,zm,k.

7 Energetic approach

The unknown plastic strain εp or more precisely Cp =
(
ap,rk , bp,rk , cp,rm,k, a

p,z
k , bp,zk , cp,zm,k

)
are determined

in this section using energetic arguments. The total elastic stored energy E [Cp] plus the dissipated
energy associated to the plastic strain D [Cp] should be minimized and the problem reduces to (1). It
should be noted that the minimization process contains all non-linear aspects of the problem. Indeed,
the Navier equation remains linear even with an elastic-plastic behavior, only the determination of the
plastic strain is not a linear procedure. The total stored energy reads:

E [Cp] =
1

2

∫
V
σ : εdV (29)

where V denotes the volume of the tube, σ = σ∗ + σp + σ̂ is the total stress considering all the three
problems A,B and C and ε is the associated strain with the isotropic behavior of Lamé’s coefficients λ, µ.
The dependence of the elastic energy on the plastic strain is not explicit in (29), however, σp obviously
depends on εp as well as σ̂ because of the surface traction T − σ∗.n− σp.n.

The equivalent plastic strain rate (or the cumulative plastic strain rate) is defined by:

ε̇eq =

√
2

3
ε̇p : ε̇p (30)

The dissipated energy is defined as:

D [Cp] =

∫
V
εeqσY dV (31)

where σY denotes the yield stress and εeq depends explicitly on Cp through (24). Thus the minimization
problem (1) enabling to determine the solution (denoted with the superscript s) reads:

Cp,s = argmin
Cp

E [Cp] +D [Cp] (32)
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In practice the gradient free Nelder-Mead algorithm base on simplex updates and included in the free
software Scilab [12] has been used in order to solve (32).

8 Results
In this section a numerical test is performed in order to validate the proposed approach. An rather
arbitrary eigenstrain given by (33) and presented in figure 2 is imposed with free surface traction (i.e.,
T = 0). Comparisons with a Finite Element computation, performed using Castem [13] are proposed.
Even though the proposed approach is intended to coil modeling for which layers are very thin compared
to their width (usual thicknesses are less than 1 mm for widths greater than 1 m) a very thick hollow
cylinder is considered in this paper in order to avoid long computation times for the FEM. Indeed, a
very thin layer would have necessitated a refined mesh. Geometrical parameters are listed in table 1.
Practically an axi-symmetrical Finite Element simulation has been performed with linear Nr × Nz

quadrangular elements.

ε∗ = 0.2
(r − rsup)(r − rinf )

rsuprinf
cos
(
π
z

L

)
(er ⊗ er − eθ ⊗ eθ) (33)

Table 1: Geometrical parameters

L 40 (mm)
rinf 15 (mm)
rsup 20 (mm)
Nr 20
Nz 40

Figure 2: Imposed eigenstrain
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Comparisons are presented for three axial positionsZ = 0mm andZ = 10 and 30 mm in figures 3 and 5.
A good agreement is observed between the presented solution and the Finite Element computation. The
purely elastic solution is added in order to show the effect of plasticity. It should be mentioned that
boundary conditions are correctly verified by the proposed approach and not correctly verified by the
Finite Element computation, indeed σrr and σrz should vanish at r = rinf and r = rsup and σrz should
vanish at Z = 0 considering the symmetry of the problem. This aspect may explain the discrepancy
observed for σrz in figures 3d and 5d. Moreover the equivalent plastic strain (or the cumulative plastic
strain) is quite well predicted by the proposed model as shown in figures 4 and 6.

(a) σrr at Z = 0 (b) σθθ at Z = 0

(c) σzz at Z = 0 (d) σrz at Z = 0

Figure 3: Test 1: Stress comparision with Finite Element simulation
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Figure 4: εeq at Z = 0

(a) σrr at Z = 10 mm and Z = 30 mm (b) σθθ at Z = 10 mm and Z = 30 mm

(c) σzz at Z = 10 mm and Z = 30 mm (d) σrz at Z = 10 mm and Z = 30 mm

Figure 5: Stress comparision with Finite Element simulation
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Figure 6: Test 1: εeq at Z = 10 mm and Z = 30 mm

9 Conclusion
A mixed analytical/numerical method has been developed to solve the problem of an hollow cylinder
subjected to arbitrary eigenstrain and surface traction. An unknown deviatoric plastic strain is added
to the imposed eigenstrain and the linear inhomogeneous Navier equation is solved analytically by in-
troducing specific series expansions. The unknown plastic strain is then identified eventually by mini-
mizing the sum of the elastic energy and the dissipated energy associated to the unknown plastic strain.
This approach enables to use conveniently the linearity of the Navier equation even though plasticity is
considered, non-linear aspects being encompassed in the energetic formulation. A comparison with a
Finite Element computation has been proposed and good agreement is observed. This paper is part of a
more general numerical strategy consisting in modeling residual stresses (generated by phase transitions,
transformation induced plasticity etc...) in coils.
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