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Résumé :  
 

Une des raisons de l'indéniable succès de la méthode des éléments finis dans les applications 

industrielles est sa grande versatilité pour la simulation numérique dans des domaines courbes. Dans 

ce cas la technique isoparamétrique sur des maillages constitués de triangles ou tetraèdres courbes a 

été introduite il y a longtemps, afin de préserver la capacité d'approximation optimale qui s'applique 

au cas de maillages en éléments droits de domaines polygonaux ou polyédriques. Cependant, outre 

des complications géométriques, cette technique exige la manipulation de fonctions rationnelles, ce 

qui oblige l'utilisateur à effectuer des choix d'intégration numérique parfois délicats. On présente une 

alternative simple pour traiter des conditions aux limites de Dirichlet, évitant tous ces inconvénients, 

sans érosion de la qualité des résultats. Il s'agit d'une approche qui dispense les éléments courbes, 

basée uniquement sur la algèbre polynomiale, étant ainsi bien adaptée à un code industriel. Son 

universalité est illustrée au travers d'exemples sur écoulements visqueux et en élasticité linéaire.. 

 

Abstract : 
 

One of the reasons for the great success of the finite element method in industry is its versatility to 

deal with problems posed in curved domains. In this case method's isoparametric version for meshes 

consisting of curved triangles or tetrahedra has been mostly employed to recover the optimal 

approximation properties known to hold for standard elements in the case of polytopic domains. 

However, besides geometric inconveniences, the isoparametric technique helplessly requires the 

manipulation of rational functions and the use of numerical integration. We consider a simple 

alternative to deal with Dirichlet boundary conditions that bypasses these drawbacks, without eroding 

qualitative approximation properties. Our technique is based only on polynomial algebra in N-simplex 

and can do without curved  elements. Its universality for use in industrial codes is illustrated in the 

framework of both incompressible viscous flow and small deformations of elastic solids. 
 

   

Mots clefs : bord courbe – code industriel – éléments finis – fonction de 

forme polynomiale – ordre optimal.  
 

Key-words :  curved boundary – finite elements – industrial code – optimal 

order – polynomial shape function. 
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1 Introduction 

 

This work deals with a finite element method for solving boundary value problem posed in a two- or 

three-dimensional domain, with a smooth curved boundary of arbitrary shape. The principle it is based 

upon is close to the technique called interpolated Dirichlet boundary conditions studied in [2] for two-

dimensional problems. Although the latter technique is very intuitive and is known since the seventies 

(cf. [5} and [10]), it has been of limited use so far. Among the reasons for this we could quote its 

difficult implementation, the lack of an extension to three-dimensional problems, and most of all, 

restrictions on the choice of boundary nodal points to reach optimal convergence rates. In contrast our 

method is simple to implement in both two- and three-dimensional geometries. Moreover optimality is 

attained very naturally in both cases for various choices of boundary nodal points.   

Without loss of essential aspects, our methodology can be perfectly described taking as a model 

simple linear partial differential equations with Dirichlet boundary conditions. We consider for 

example the Poisson equation solved by different N-simplex based  methods, incorporating degrees of 

freedom other than function values at the mesh vertices. If standard quadratic Lagrange finite elements 

are employed, it is well-known that approximations of an order not greater than 1.5 in the energy norm 

are generated (cf. [3]), in contrast to the second order ones that apply to the case of a polygonal or 

polyhedral domain, assuming that the solution is sufficiently smooth. If we are to recover the optimal 

second order approximation property, something different has to be done. Since long the isoparametric 

version of the finite element method for meshes consisting of curved triangles or tetrahedra (cf. [11]), 

has been considered as the ideal way to achieve this. It turns out that, besides a more elaborated 

description of the mesh, the isoparametric technique inevitably leads to the integration of rational 

functions to compute the system matrix, which raises the delicate question on how to choose the right 

numerical quadrature formula in the master element.  

In contrast, in the technique to be considered in this paper exact integration can always be used for this 

purpose, since we only have to deal with polynomial integrands. Moreover the element geometry 

remains the same as in the case of polygonal or polyhedral domains. It is noteworthy that both 

advantages are conjugated with the fact that no erosion of qualitative approximation properties results 

from the application of our technique, as compared to the equivalent isoparametric one.  

We should also emphasize that this approach is particularly handy, whenever the finite element 

method under consideration has normal components or normal derivatives as degrees of freedom. 

Indeed in this case the definition of isoparametric finite element analogs is not always so clear or 

straightforward (see e.g. [1]).  

An outline of the paper is as follows. In Section 2 we describe our method to solve a model Poisson 

problem with Dirichlet boundary conditions in a smooth curved two-dimensional domain with 

conforming Lagrange finite elements based on meshes with straight triangles, in connection with a 

standard Galerkin formulation. We recall the error estimates established in [7] for this method. In 

Section 3 we assess its approximation properties, by solving problems posed in a curved two-

dimensional domain with piecewise quadratic functions. More specifically circular membrane 

problems are solved, and we use our methodology to represent the velocity in a circular Couette flow. 

Numerical experiments are further carried out in Section 4, again in the framework of curved 

membranes, but also for small plane deformations of plates. However in contrast to Section 3 here the 

simulations are done with an adaptation of our technique to a Hermite analog (cf. [8]) of the Raviart-

Thomas mixed finite element of the lowest order [6].  We conclude in Section 5 with a few comments.  
 

2  Method description 

 

As a model we consider the Poisson equation with Dirichlet boundary conditions in an N-dimensional 

smooth domain Ω with boundary ∂Ω for N=2 or N=3, that is, – ∆ u = f  in  Ω, u = d on ∂Ω, where f and 

d are given functions defined in Ω and on ∂Ω, having suitable regularity properties. We shall be 
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dealing with approximations of u of order k for k > 1 in the standard energy norm, assuming that f, d 

and Ω are sufficiently smooth. 

Although the method to be described below applies to any spatial dimension, for the sake of simplicity 

we confine its description to the two-dimensional case. 

Let us then be given a partition Th of Ω into straight triangles satisfying the usual compatibility 

conditions (see [3]). Th is assumed to belong to a uniformly regular family of partitions. Let Ωh  be the 

polygonal domain formed by the union of the triangles in Th  and ∂Ωh be its boundary. Further hT being 

the diameter of a triangle T in Th , as usual we denote by h the maximum of the hT s as T sweeps  Th. 

Notice that if Ω is convex Ωh is a proper subset thereof. We make the more than reasonable 

assumptions on the mesh that no element in Th  has more than one edge on ∂Ωh.  

We also need some definitions regarding the skin comprised between ∂Ωh and ∂Ω. First of all, in order 

to avoid non essential technicalities, we assume that the mesh is constructed in such a way that convex 

and concave portions of ∂Ω correspond to convex and concave portions of ∂Ωh. This property is 

guaranteed if the points separating such portions of ∂Ω are vertices of polygon Ωh. In doing so, let Sh 

be the subset of Th consisting of triangles having one edge on ∂Ωh. Now for every triangle T belonging 

to Sh we denote by ∆T the skin portion delimited by ∂Ω and the edge eT of T whose end-points belong 

to ∂Ω and let T ' be the union of T  and ∆T  (see Figure 1). 

 

 
 

Skin portion ∆T for a triangle T next to a convex (right) or a concave (left) portion of ∂Ω 

Figure 1 

 

 

Next we introduce two sets of functions Vh and Wh associated with Th.  Vh is the standard Lagrange 

finite element space consisting of continuous functions v defined in Ωh that vanish on ∂Ωh , whose 

restriction to every triangle T in Th is a polynomial of degree less than or equal to k for k > 1. For 

convenience we extend by zero every function v in Vh to Ω \ Ωh .  

Wh in turn is the set of functions defined in Ωh having the properties listed below 

 

 1. The restriction of w in Wh to every T in Th  is a polynomial of degree less than or equal to k ; 

 

 2. Every w in Wh is continuous in Ωh and w(S) = d(S) for every mesh vertex S located on ∂Ωh ; 

  

 3. A function w in Wh  is also defined in Ω \ Ωh , in such a way that its polynomial expression in a 

 triangle T belonging to Sh also applies to points in the skin portion ∆T ; 

 

 4. For all T belonging to Sh , w(P) = d(P) at every point P of ∂Ω located on the lines passing through    

 the vertex OT of T not belonging to ∂Ω and the k–1 points M of eT  different from a vertex of T lying 

 among those that subdivide this edge  into k segments of equal length (cf. Figure 2). 
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Construction of nodes P on ∂Ω for set Wh related to lagrangian nodes M on ∂Ωh  for k = 3 

Figure 2 

 

Remark:  The construction of the nodes associated with Wh located on ∂Ωh advocated in item 4 is not 

mandatory. Notice that it differs from the intuitive construction of such nodes lying on normals to 

edges of ∂Ωh commonly used in the isoparametric technique. The main advantage of this proposal is 

an easy determination of boundary node coordinates by linearity, using a supposedly available 

analytical expression of ∂Ω. Actually the choice of boundary nodes ensuring our method's optimality 

is really wide, in contrast to the restrictions inherent to the interpolated boundary condition method 

(cf. [2]).  ■ 

 

The fact that Wh is a non empty finite-dimensional manifold was established in [7]. 

            

Next we set the problem associated with the sets of functions Vh  and Wh , whose solution is an 

approximation uh  of the solution u to the Poisson equation. Taking any regular extension of f  to Ωh \ 

Ω and still denoting the resulting function by f, uh is determined as the solution of the following 

variational problem: 

 

uh  lies in Wh  and fulfills  ∫Ωh  grad uh · grad v dx = ∫Ωh  f v dx   for all v in Vh  .                                   (1)                                                       

 

According to [7], provided h is sufficiently small, problem (1) has a unique solution. Moreover the  

underlying bilinear form is uniformly stable on Wh xVh  in the sense of Babuska-Brezzi (cf. [7]). This  

leads to the conclusion that the approximation method associated with (1) is a k-th order method in the 

natural energy norm, as long as u is sufficiently smooth and all the Th s under consideration belong to     

a regular family of partitions of Ω in the sense of  [3]. In short [∫Ωh  | grad (uh  – u) |
2
 dx] 

1/2  
is an 

O(h
k
),  under such assumptions.   

              

3  Numerical experiments with quadratic elements 

 

In order to show the effectiveness of the technique studied in this work to take into account Dirichlet 

boundary conditions prescribed on curved boundaries, we report in this section significant numerical 

results for some academic test-problems with known exact solution, taking k=2. We selected two 

classical applications in Continuum Mechanics, namely the deflexion undergone by a plane membrane 

under the action of forces orthogonal to its plane, and the laminar flow of an incompressible viscous 

fluid between two rotating cylinders.  
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3.1  Deflexions of an elastic membrane  

 

In the small strain regime a homogeneous elastic membrane whose edge is kept fixed, subjected to a 

load distribution g applied perpendicularly to its plane, Π is governed by the Poisson equation with 

homogeneous Dirichlet boundary conditions. More specifically, in appropriate dimensionless form the 

deflexion u in the direction orthogonal to Π satisfies –Δu = f  in the domain Ω occupied by the 

membrane in Π, where f = c g for a suitable constant c. For the sake of simplicity we consider that  Ω 

is the unit disk with center at the origin O of a cartesian coordinate system (O,x,y) attached to Π. 

Taking g of the conical form  αr where r = ( x
2 
+ y

2 
)

1 / 2
 the exact solution is given by u(x,y) = α (1 – r

3
)

  

/ 9c. In our computations we took α = 9c, and used meshes successively refined consisting of 2M
2
 

triangles for M=2
m 

 with m = 2, 3, 4, 5, 6. For better visibility quite abusively we set h = 1/M . The 

resulting errors in the following senses are displayed in Table 1. In the third row we show the errors in 

the energy norm. In the fourth row the mean square norms of (u – uh ) in Ωh  are given, while in the last 

row the maximum absolute errors at the mesh nodes are supplied. In order to make sure that there was 

no favorable effect owing to the particular form of the domain and/or the exact solution, we also 

computed with the same meshes using the traditional approach. This consists of prescribing zero 

boundary values at the mid-points of the edges eT, besides the vertices of ∂Ωh . Corresponding errors 

are supplied in Table 2. Observation of both tables confirm second order convergence in the energy 

norm, while the traditional approach yields only O(h
3/2

) approximations in the same sense, as predicted 

in classical books (cf. [3]). Even better news come from the errors in the mean-square sense. We 

observe third order convergence for our method, in contrast to the second order convergence of the 

traditional approach. As for the maximum errors at the nodes, both approaches seem to be equivalent. 
 

Table 1 – Errors for the membrane problem solved with the new method for k=2  

 

M    → 4 8 16 32 64 
h     → 0.250000 0.125000 0.062500 0.031250 0.015625 

      
Energy norm of  

uh – u   
0.14007 x 10

-1 0.36168 x 10
-2 0.91850 x 10

-3 0.23151 x 10
-3 0.58128 x 10

-4 

      
Mean-square 

norm of uh – u   
0.43895 x 10

-3 0.56460 x 10
-4 0.71709 x 10

-5 0.90592 x 10
-6 0.12428 x 10

-6 

      
Max. |uh–u | at 

mesh nodes 
0.14376 x 10

-1 0.36093 x 10
-2 0.90327 x 10

-3 0.22588 x 10
-3 0.56473 x 10

-4 

 
Table 2 – Errors for the membrane problem solved with the classical approach for k=2  

 

M    → 4 8 16 32 64 
h     → 0.250000 0.125000 0.062500 0.031250 0.015625 

      
Energy norm of  

uh – u   
0.54344 x 10

-1 0.19690 x 10
-1 0.70417 x 10

-2 0.25026 x 10
-2 0.88700 x 10

-3 

      
Mean-square 

norm of uh – u   
0.81891 x 10

-2 0.19879 x 10
-2 0.48790 x 10

-3 0.12070 x 10
-3 0.29979 x 10

-4 

      
Max |uh–u | at 

the mesh nodes 
0.14376 x 10

-1 0.36093 x 10
-2 0.90327 x 10

-3 0.22588 x 10
-3 0.56473 x 10

-4 
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3.2  Couette flow between rotating cylinders 

 

The aim of the experiments reported in this sub-section is to assess the behavior of our method in the 

case where Ω is not convex. More specifically Ω is the annulus delimited by the circles given by r = re  

r = ri  with r
2
 = x

2
 + y

2
, with ri < re. This annulus represents the cross section of the domain comprised 

between two concentric cylinders with radii re and ri, filled with a viscous incompressible flow with 

viscosity μ and density ρ. The inner cylinder rotates with angular velocity ωi and the outer cylinder is 

kept fixed. We assume flow conditions under which the flow is laminar. In this case the velocity field 

v = (vx, vy, vz) referred to a cartesian frame (O,x,y,z) such that the z-axis coincides with the axis of both 

cylinders is given by vx(x,y)= - y ω(r) and vy(x,y)= - vx(y,x), where ω(r) is the angular velocity of the 

fluid at a distance from the z-axis equal to r. It is well-known that ω(r) = ωi (ri /r)
2 
( re

2 
– r

2 
) / ( re

2 
– ri

2
). 

The hydrostatic pressure p in the fluid in turn depends only on r and is given by dp/dr= ρ r ω
2
(r). Of 

course, since the exact solution is known, it is no point attempting to simulate this kind of flow. 

Instead our experiments consist of approximating by piecewise quadratic finite elements the velocity 

components vx and vy and field v, which together with p satisfy the momentum equation in Ω, namely  

- μ Δvx  + v ∙ grad vx  = - x ρ ω
2
(r)  and  - μ Δvy  + v ∙ grad vy  = - y ρ ω

2
(r) 

with the Dirichlet boundary conditions vx (x,y) = - yωi  and vy(x,y) = xωi  if r
  
= ri and vx= vy = 0 if r

  
= re. 

In short, letting d be the function defined on ∂Ω in accordance with the above boundary data, and 

setting f(x,y) = - x ρ ω
2
(r) (resp. f(x,y) = y ρ ω

2
(r) ), we approximate vx (resp. vy) by uh in Wh for k=2, as 

the solution of the following convection-diffusion equation in varirational form:  

 

      ∫Ωh [ μ grad uh ∙ grad v + v ∙ grad uh  v] dx = ∫Ωh  f v dx   for all v in Vh  .                                      (2) 

                                                       

In order to take advantage of symmetry we solve (2) in the half annulus corresponding to x > 0 (resp. y 

> 0), by prescribing homogeneous Neumann boundary conditions at x=0 (resp. y=0). We take ωi =1, 

and re  = 1, ri  = 1/2. The meshes of this computational domain consist of 8M
2
 triangles constructed by 

subdividing the range of the radial coordinate r into M equal segments, and its total aperture equal to π 

into 4M equal angles (with M > 1). Setting for convenience h = π  / 4M and u = vx, we give in Table 3 

the errors u – uh measured in the energy norm, for M = 2,4,8,16,32. Akin to Table 1, we supply again 

the mean square norm of the errors, together with the maximum absolute values of  u – uh  at the mesh 

nodes. As one can observe, in this case too the numerical results confirm that our method is of order 

two in the energy norm and of order three in the mean square sense. However in this example a super-

convergence effect occurs, for the maximum errors at the nodes decrease almost as an O(h
4
).   

 
Table 3 – Errors for the Couette flow velocity component u=vx obtained with the new method for k=2 

  

4M    → 8 16 32 64 128 
h     → 0.392700 0.196350 0.098175 0.049087 0.024544 

      
Energy norm of  

uh – u   
0.10690 x 10

-0 0.27930 x 10
-1 0.70862 x 10

-2 0.17789 x 10
-2 0.44522 x 10

-3 

      
Mean-square 

norm of  uh – u   
0.30589 x 10

-2 0.39321 x 10
-3 0.49837 x 10

-4 0.62551 x 10
-5 0.78301x 10

-6 

      
Max |uh–u | at 

the mesh nodes 
0.22258 x 10

-2 0.20322 x 10
-3 0.15176 x 10

-4 0.10267 x 10
-5 0.66015 x 10

-7 
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4  Simulations using Hermite interpolation 

 

In this section we apply the principles described in Section 2 to a finite element method based on 

Hermite interpolation, to show that the methodology employed in this work is as universal as can be. 

More specifically, we solve a few model problems of linear elasticity using a variant of the classical 

Raviart-Thomas mixed finite element of the lowest order [6], commonly known as RT0. This variant 

studied in author's work [8] and [9] among other papers of his, is to be employed in the framework of 

variational formulations mimicking corresponding mixed formulations. A Hermite interpolation with 

discontinuous piecewise incomplete quadratic functions allows for better accuracy of an approximate 

unknown field in the mean square sense, as compared to the RT0 finite element, though at equivalent 

cost. Unknown field's  gradients in turn, such as deformations, are identically represented. 

We solve two types of model problems posed in smooth curved two-dimensional domains. In Sub-

section 4.1 we consider again the membrane problem recast in mixed form, in which prescribed zero 

normal forces are treated as Dirichlet boundary conditions, while prescribed deflexions are regarded as 

Neumann boundary conditions. In Sub-section 4.2 we use the same numerical ingredients to determine 

the displacement field of a plate of curved shape in the small plane deformation regime, with 

prescribed normal forces on the outer edge of its mid-plane.  
 

4.1  A stress-deflexion formulation for elastic membranes 

 

We consider that the deflexion of a plane elastic membrane vanishes only on a part of its edge. On the 

complementary part we assume a zero normal force condition, that is, ∂u/∂n = 0, where ∂u(∙) /∂n 

denotes the outer normal derivative along ∂Ω. For the sake of simplicity we assume that the mesh Th 

matches the transition points between both parts of ∂Ω, in the sense that they are vertices of the 

corresponding partition of Ω into triangles.  

 In order to prescribe normal forces on the edge of the membrane, following [8], first we recast the 

membrane finite-element model (1) in a non standard variational form, namely: 

 

–  ∑T in Th    [   ∫T   (  Δuh  v + grad uh ∙ grad v + uh Δ v )  dx ] =  ∫Ωh  f v dx  for all v in Vh ,                    (3) 

 

where uh  the approximation of u in a set of functions Uh  to be specified hereafter, and Vh is a set of 

(discontinuous) functions of the form a x
2 

/
 
2 + b  ∙ x + e in each triangle T of Th, a and e being real 

coefficients and b being a vector of R
2
. Then, like the flux variable in the RT0  method, the gradient of 

v in Vh  is of the form a x + b and its normal component along an edge is constant according to [6]. We 

require that this normal component of every v in Vh  along a mesh edge  be single valued if the edge is 

common to two mesh triangles, or to vanish if the edge is contained in ∂Ωh and corresponds to a zero 

normal force boundary condition. Actually the degrees of freedom of Vh are precisely these normal 

derivatives along the edges, besides the function mean values in the mesh elements (cf. [8]). Owing to 

this choice of degrees of freedom the local construction of functions in Vh  must rely upon Hermite 

interpolation. Since this method represents the gradient of the unknown field in the same way as the 

RT0 mixed method, both methods differ only in the (discontinuous) representation of the deflexion 

itself. Indeed in each triangle it is a linear function enriched with a quadratic term in the case of the 

Hermite method, whereas it is just  constant for the mixed method. As long as Ω is a polygon, we can 

take Uh =Vh, , for such a distinction renders the above described Hermite variant of RT0 a second order  
method in the  mean square sense (cf. [8]), in contrast to the mixed method, which is just of the first 

order in the same sense. Here we attempt to show that, unless a suitable Uh  different from Vh is chosen,  
such a property no longer holds, in case  Ω is a curved domain.  

Our choice of Uh  is a space defined in the same way as Vh , except for the mesh triangles T in the 

subset of Sh  of those triangles having an edge upon which a zero normal derivative condition must be 
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enforced. However instead of enforcing this condition along such an edge, we require that the 

(constant) first order derivative of a function in Uh  in the direction normal to it vanish along the 

tangent to the boundary at the intersection with it, of the line joining the mid-point of this edge to the 

opposite vertex. This means that for each boundary triangle we pick up the normal derivative 

boundary condition where it is prescribed, i.e., on the neighboring portion of the true boundary. This is 

exactly the counterpart for the Hermite finite element under study, of the technique designed to treat 

Dirichlet boundary conditions with Lagrange finite elements described in Section 2.  

Unlike the experiments reported so far, in this sub-section we solve test-problems whose exact 

solution is not known. One of the aspects to be focused here is the response of our method in case of 

boundary concavities. Due to the impossibility to infer convergence rates on the basis of true error 

functions, we will attempt to understand method's behavior by observing the evolution of a certain 

quantity related to the numerical solution as the meshes are refined. Here a choice better than the 

mean-square norm is the maximum value at the element centroids. This is because the corresponding 

value of the exact solution lies necessarily in Ωh , and hence the O(h) mean-square norm of the 

solution in the skin Ω \ Ωh will not dominate the order evaluation, should such a norm be employed.  

Two test-problems were solved for rosette-shaped membranes illustrated in Figure 4. Before 

presenting corresponding results we first report those for a toy-problem in an ellipse with semi-axes 

0.5 and 1.0, prescribing zero normal derivative along its boundary, whose exact solution is a 

polynomial of degree four. For such a problem the evolution as the mesh is refined of numerical 

solution's maximum absolute value at the centroids of the mesh elements was checked. This allowed to 

assess its convergence rates to the corresponding value of the exact solution for three different 

approaches, namely, the classical RT0, method, its Hermite variant taking Uh=Vh and the latter 

combined with our new method to approximate Dirichlet boundary conditions on curved boundaries. 

Here again the meshes employed in these computations are indexed by an integer M (setting h=1/M), 

and are constructed quite in the same way as in Sub-section 3.1 for a disk. From the error evolution 

measured in the mean-square norm, it turned out that the corresponding observed convergence rates 

are roughly 1, 5/3 and 2, respectively. This clearly indicates that the modification in order to take into 

account the normal derivative boundary condition by the Hermite variant of RT0 is indeed necessary, if 

we wish to recover method's second order in the mean-square norm, known to hold for polygonal 

domains (cf. [8]). On the other hand a convergence rate of 2 is observed for the three methods as far as 

solution's maximum absolute value at element centroids is concerned, as one can infer from Table 4. 

Nevertheless, it is noteworthy that the accuracy of the boundary-modified Hermite variant of RT0  in 

this respect is considerably improved, even for coarser meshes. This can also be  observed in Table 4, 

taking into account that the maximum absolute value of the exact solution is 1.56250, up to the fifth 

decimal.  
 
Table 4 – Maximum absolute value at element centroids of the solution to a toy-problem in an ellipse 

  

M    → 8 16 32 64 128 

h     → 0.01250000 0.00625000 0.00312500 0.00156250 0.00078125 

      

Classical RT0  

mixed method 
1.509333 x 10

-2 1.546930 x 10
-2 1.558024 x 10

-2 1.561229 x 10
-2 1.562206 x 10

-2 

Hermite variant  

of RT0  (Uh=Vh) 
1.532269 x 10

-2 1.553026 x 10
-2 1.559596 x 10

-2 1.561629 x 10
-2 1.562283 x 10

-2 

Modified Hermite 

variant of RT0    
1.556403 x 10

-2 1.561907 x 10
-2 1.562463 x 10

-2 1.562495 x 10
-2 1.562503 x 10

-2 
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Test-problem 4.1.1 – The membrane is symmetric with respect to both cartesian coordinate axes. It has 

a hole whose edge is a homothetical transformation of membrane's outer edge with center at the origin 

of the coordinate system and ratio equal to 1/4. Both its outer edge and inner edge consist of an 

assembly of quarter circles alternating a radius equal to 1 and β = [tan(5π/16) -1] ≈ 0.49660576 for the 

outer edge, in such a way that they have the same tangent at common points. A quarter domain is of 

the form depicted in Figure 3. We assume that the deflexion vanishes on the edge of the hole, while on 

the outer edge of the membrane no normal forces act. We take a right hand side function f ≡ 1. 

Naturally enough, only a quarter domain is taken into account in the computations. Like in the 

previous test-problems a regular family of meshes indexed by an integer parameter M is employed. M 

being a multiple of 4, we construct 3M/4 homothetical transformations Ωl of Ω with center at the 

origin and ratio l/M, for l = M/4, M/4+1, … M–1. θ being the polar angle, the sector given by 0 ≤ θ  ≤ 

π/2  within Ωl  is subdivided into 2l equal sectors. The mesh vertices are the intersections with the  

boundary of  Ωl  of the lines given by θ = mπ/(2l), for m=0, 1,…, 2l, resulting from such subdivisions 

into 2l equal angles. The total number of vertices equals (M+1)
2
–(M/4)

2
,
 
while the total number of 

elements generated by this procedure is 2[M
2
 – (M/4)

2 
].  

On the left part of Figure 4 an illustration of the whole domain is given, the hole being painted in 

black in order to represent a zero deflexion along its inner edge. 

For simplicity we set h = 2.5/M ≈ (2+β)/M and solve the problem for M=8,16,32,64 and 128. 

Resulting numerical values supplied in Table 5 are the maximum absolute values at mesh triangle 

centroids of the solutions obtained by the classical approach, that is, taking Uh = Vh., and by the 

modification using the above defined space Uh. It is a little disappointing to figure out that, in contrast 

to the toy-problem in an ellipse, both methods behave rather identically for this test-problem with a 

presumably smooth exact solution. This could be due to the fact that here the domain has several 

boundary concavities, but anyway such an issue deserves further investigation.  

 

 
 

A quarter rosette-shaped membrane with a hole supported on its inner edge 

Figure 3 
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Geometry and boundary conditions for Test-problem 4.1.1 (left) and Test-problem 4.1.2 (right) 

Figure 4 
 

Table 5 – Solutions' maximum absolute values at element centroids for Test-problem 4.1.1 

  

M    → 8 16 32 64 128 

h     → 0.31250000 0.15625000 0.07812500 0.03906250 0.01953125 

Hermite variant  

of RT0   (Uh=Vh) 
 

2.4089238 
 

2.3097770 
 

2.2735438 
 

2.2623647 
 

2.2610764 

 Modified Hermite  

variant of RT0  
 

2.4132353 
 

2.3102900 
 

2.7298998 
 

2.2636612 
 

2.2610798 

 
Test-problem 4.1.2 –  Here the membrane is of the form depicted on the right side of Figure 4, i.e., 

now it has no hole. We assume that the deflexion vanishes on the convex portions of ∂Ω highlighted 

with thicker lines, and prescribe zero normal forces on its concave portions. Here again we take f ≡ 1.  

Meshes of a quarter domain indexed by an integer M are generated in a way quite similar to Test-

problem 4.1.1, but now each one of them contains 2M
2  

triangles, like in the case of the ellipse. We 

display in Table 6 the same kind of results as in Table 5. Here again both methods appear to be 

equivalent in the sense of such maximum values, but now they seem to converge only linearly to the 

maximum value of the exact solution. In this case this is rather natural, if we consider solution's 

presumably low regularity, owing to the abrupt change of boundary conditions. 
 

Table 6 – Solutions' maximum absolute values at element centroids for Test-problem 4.1.2 

 

M    → 8 16 32 64 128 

h     → 0.31250000 0.15625000 0.07812500 0.03906250 0.01953125 

Hermite variant  

of RT0   (Uh=Vh) 
 

1.3240208 
 

1.2859156 
 

1.2608626 
 

1.2460173 
 

1.2377800 

 Modified Hermite  

variant of RT0  
 

1.3244286 
 

1.2863349 
 

1.2610147 
 

1.2460619 
 

1.2377921 
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Remark : A partial conclusion of Test-problems 4.1.1 and 4.1.2 is that our technique to handle with 

Hermite finite elements prescribed normal derivatives on curved boundaries is not so interesting in 

the case of low order methods. Nevertheless in the next sub-section we address a situation which 

somehow contradicts such a view. ■ 

 

4.2 A tangential-displacement free finite-element model for plates 

 

In the framework of the theory of plates and shells practitioners must take into consideration situations 

where the body's edge undergoes no displacement in the direction tangent to it. For example, this 

happens in the study of bucking of plates subjected to plane displacements (see e.g. [4]). Of course it 

is not our intention to address here complex problems of the kind, but just study a numerical method 

particularly suitable to simulate small plane deformations of curved plates whose edge displacement is 

normal to it. Like in Sub-section 4.1 the method is a Hermite variant of the lowest order Raviart-

Thomas mixed finite element RT0, though in vector version, since the unknown here is a two-

dimensional  displacement field. As a matter of fact this Hermite method was first developed in [9] to 

solve Maxwell's equations of electro-magnetism, in which case the electric field also satisfies zero 

tangential-component boundary conditions. Except for physical constants, the stationary counterpart of 

Maxwell's equations studied in [9] is very similar to the system that we are going to address here. For 

this reason the author refers to this work for more details on the method to be experimented in this 

sub-section, in the simulation of some simple curved plate deformation test-problems. 

Here we consider a particular form of the homogeneous isotropic linear elasticity system in a two-

dimensional domain Ω occupied by plate's mid-plane, satisfied by the displacement field u = (ux , uy). 

More particularly we assume that the plane force g = (gx , gy) acting on the edge of the plate is normal 

to it, and thus we may write g = g n, where g is a scalar function and n is the unit outer normal vector 

to the boundary ∂Ω of Ω. Then μ and λ being the Lamé constants of the material of the plate, under the 

conjugate action of body forces f = (fx , fy) the equations to solve are – μ Δu – (μ+λ)grad [div u] = f in 

Ω, with the boundary conditions u x n = 0 and (2μ+λ) div u = g on ∂Ω.  

Recalling the finite element set of functions Vh  defined in the previous section, we define a space Wh  

consisting of fields v whose components belong to Vh , in the case where no zero values of normal 

derivatives along edges contained in ∂Ωh have to be enforced. Then we define two subsets Vh and Vh, g  

of Wh  as follows. Denoting by nh the unit outer normal vector along ∂Ωh , Vh  consists of fields v such 

that  (the constant) ∂(v ∙ nh)/∂nh = 0 along all the edges eT of  ∂Ωh (cf. Figure 1). Vh, g in turn consists of 

fields wh whose  value ∂(wh ∙ nh)/∂nh along any edge eT of  ∂Ωh equals g(PT)/(2μ+λ), where, naturally 

enough, PT is the nearest intersection with ∂Ω of the perpendicular to eT passing through the mid-point 

MT of this edge. Differently from the case of the previous sub-section, here PT  will be the nearest 

intersection with ∂Ω of the perpendicular to eT  passing through the mid-point MT  of this edge. Then, 

quite analogously to the previous sub-section, a finite-element approximation uh  of u in the set Vh, g , 

is a (presumably unique) solution to the following problem : 

 

–∑T in Th [ ∫T {μ(Δuh ∙ v+grad uh ∙ grad v+uh ∙Δv)+(μ+λ)grad div uh ∙ v)}dx] =∫Ωh f ∙ v dx for all v in Vh (4) 

 

Notice that, similarly to (3), problem (4) mimics a mixed formulation of our problem, in which the 

boundary condition  u x n = 0 is handled as a do-nothing (Neumann) boundary condition, and (2μ+λ) 

div u = g on ∂Ω is viewed as a Dirichlet boundary condition. Indeed the former condition will be 

automatically enforced (in a weak sense), since we do not require anything from ∂(v x nh)/ ∂nh along 

∂Ωh . It is also important to stress that in problem (4) the latter boundary conditions are shifted from 

the true boundary ∂Ω  to the boundary ∂Ωh of the polygon approximating the curved domain Ω. We 

will next show that in the case of the problem under study such an approach is disastrous.  

We recall that in this work we want to focus on issues related to conditions prescribed on curved 

boundaries. That is why we will solve a modified problem for which on the one hand f ≡ 0, like in 
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most practical situations, while on the other hand the divergence of u is known everywhere in Ω 

beforehand, namely, div u = f  in Ω,  with f := g / (2μ+λ) on ∂Ω. Thus we will actually solve:  

 

 – ∑T in Th [ ∫T   μ ( Δuh ∙  v+grad uh  ∙  grad v+uh  ∙ Δv ) dx ] = ∫Ωh  f ∙ v dx   for all v in Vh,                  (5) 

 

where f = (2μ+λ) grad f. It is noteworthy that (5) is placed in the same functional setting as the one in 

[9] for Maxwell's equations. Hence we can claim second order convergence of uh to u in the mean-

square norm, in case Ω is a rectangle, for example. However as seen below, this will no longer be the 

case of a curved Ω.  

In a first test-problem Ω is a disk with radius equal to 0.5 in a certain system of units, in which g is a 

constant equal to one as well, at every point of ∂Ω. Assuming a Poisson ratio equal to 1/4, we have  λ 

= μ and therefore the exact solution is given by u(x,y) = ( x ; y ) [x
2 

+y
2
] 

1/2
 / 3μ. Computing with  

meshes for the whole disk, derived from those of Section 3.1 for the quarter disk using symmetry with 

respect to the coordinate axes, we obtain the results displayed in Table 7. Here M is the number of 

subdivisions of a diameter instead of a radius. 
   
Table 7 – Errors for a circular plate problem solved by (5) shifting boundary conditions on div u to ∂Ωh  

 

M    → 4 8 16 32 64 
h     → 0.250000 0.125000 0.062500 0.031250 0.015625 

      
Mean-square norm 

of  uh – u   
0.51236 x 10

-1 0.51959 x 10
-1 0.52155 x 10

-1 0.52205 x 10
-1

  0.52217 x 10
-1 

      
Mean-square norm  

of  grad ( uh – u )   
0.21710 x 10

 0 0.21114 x 10
 0 0.20947 x 10

 0 0.20903 x 10
 0 0.20892 x 10

 0 

       
Max | uh – u | at 

element centroids 
0.67396 x 10

-1 0.75965 x 10
-1 0.79763 x 10

-1 0.81574 x 10
-1

  0.82464 x 10
-1 

  

Table 7 shows that no convergence to problem's exact solution occurs if the boundary conditions on 

the normal component of the normal force are shifted from the true boundary to the boundary of the 

polygon Ωh . It even seems that convergence to the solution of another problem is taking place.  

In view of these unacceptable results, akin to Sub-section 4.1.1, we next endeavor to modify scheme 

(5), in order to recover method's orders that hold in case Ω is a polygon. Here our boundary condition 

interpolation technique will be accomplished by requiring that the divergence of uh  at the above 

defined point PT  located on ∂Ω next to a mesh triangle T having an edge eT  contained in ∂Ωh (cf. 

Figure 1) equals g(PT). Notice that, akin to the previous sub-section, we could as well choose another 

boundary point at which the Dirichlet boundary condition on the divergence is to be enforced. 

However the above choice is particularly handy, since in the case of a disk the normal to ∂Ω at PT  is 

aligned with the normal to eT . 

Now, we make use of the expression of the divergence operator on the boundary of Ω in local 

curvilinear coordinates, namely,  div v = ∂(v ∙ n)/∂n + ∂(v ∙ t)/∂t + (v ∙ n) / R , where t  is the unit 

tangent vector along ∂Ω, ∂(∙)/∂t denotes the partial derivative along t, and R is the local curvature 

radius of ∂Ω. Noticing that we expect the tangential component of uh  along ∂Ω to vanish, it seems 

reasonable to require that  [∂(uh ∙ n)/∂n + (uh ∙ n) / R ](PT) = g(PT). Actually the values of ∂(uh ∙ n)/∂n 

and uh ∙ n at PT  are taken from the expression of  uh in T, even though extended outside this triangle. 

Of course in the present case R = 0.5 everywhere.  

In Table 8 we supply the same kind of errors for our modified approach as in Table 7. One can clearly 

observe solution's second order convergence in the mean-square norm, while optimal first order 

convergence of the solution gradient – hence of the deformation –, seems to hold in the same norm.       
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Table 8 – Errors for model (5) assigning divergence values on the true boundary of a circular plate  

 

M    → 4 8 16 32 64 
h     → 0.250000 0.125000 0.062500 0.031250 0.015625 

      
Mean-square norm 

of  uh – u   
0.19125 x 10

-2 0.49514 x 10
-3 0.12505 x 10

-3 0.31358 x 10
-4 0.78381 x 10

-5 

      
Mean-square norm  

of  grad ( uh – u )   
0.31326 x 10

-1 0.16059 x 10
-1 0.80808 x 10

-2 0.40471 x 10
-2 0.20247 x10

-2 

      
Max | uh – u | at 

element centroids 
0.26213 x 10

-2 0.70591 x 10
-3 0.18255 x 10

-3 0.46882 x 10
-4 0.11948 x 10

-4 

  

Since one might object that circular plates are too simple and particular, to conclude this sub-section 

we assess the above technique to treat zero edge tangential displacements for a different geometry. 

More specifically we apply the numerical model (5) assorted with our Dirichlet boundary condition 

interpolation technique, to the following toy-problem in an ellipse with semi-axes equal to c and 1.  

We take μ = λ = 1, f = ( [ 6 + 2c
2
 ] x ; [ 2 + 6c

2 
] c

2 
y ) and g = –3 [ (3 + c

2 
) x

2 
+ ( 1 + 3 c

2 
) c

2 
y

2 
]. The 

exact solution is u = – ( [ x
2 
+ c

2 
y

2
 ] x ;  [  x

2 
+ c

2 
y

2
 ] c

2 
y ). We construct meshes for the whole ellipse  

in the same way as for the circular plate, by adjusting just the radial coordinate, in order to take into 

account the ellipse's equation in polar coordinates instead of a constant one. For convenience we 

redefine h = 2c/M, taking c = 0.5. 

We give in Table 9 the same kind of errors as in Table 8. These results confirm that for arbitrary 

smooth curved domains, practically the same behavior as in the circular case can be expected, as long 

as the modification advocated in this subsection is implemented, to treat (Dirichlet) boundary 

conditions on the normal component of a boundary traction field.  
 

Table 9 – Errors for a toy-problem (5) in an ellipse assigning values of div uh  on the true boundary 

 

M    → 4 8 16 32 64 
h     → 0.250000 0.125000 0.062500 0.031250 0.015625 

      
Mean-square norm 

of  uh – u  
0.17029 x 10

-1 0.48793 x 10
-2 0.12637 x 10

-2
      0.31846 x 10

-3
    0.79764 x 10

-4
  

      
Mean-square norm 

of grad ( uh – u )   
0.14110 x 10

 0 0.75943 x 10
-2  0.38734 x 10

-2
  0.19464 x 10

-1 0.97442 x 10
-2 

      
Max | uh – u | at 

element centroids 
0.22458 x 10

-1 0.71142 x 10
-2 0.20015 x 10

-2 0.53302 x 10
-3

   0.13804 x 10
-3 

  
Remark :  In contrast to the approach employed in Section 3 to solve the curved membrane problem 

with quadratic finite elements, in the case of our Hermite variant of the mixed method RT0  it is not 

necessary to recalculate the basis corresponding to the modification of the sets Vh and Vh, g,  advocated 

in this section. This is due to the particularly simple representation of the unknown function or field at 

element level. Indeed, the function or field itself have no boundary degree of freedom to adjust, while 

its normal derivative within a boundary triangle T varies linearly in the directions orthogonal to edge 

eT  and is constant along any segment parallel to it. Hence recalculation of such bases to fit an edge 

parallel to eT  tangent to ∂Ω will necessarily result in the expressions already determined for Vh, . ■   
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5  Conclusion and final comments 

 

Globally, on the basis of the numerical experiments reported in this work for various problems of  

Continuum Mechanics posed in curved bounded domains, we can assert that our new method to 

handle Dirichlet boundary conditions with higher order finite element methods, provides a simple and 

reliable tool to overcome technical difficulties brought about by complicated situations and/or 

interpolations.   

This technique was illustrated here in the two-dimensional case, for classical Lagrange finite elements, 

and for a Hermite analog introduced in [8] and [9] in scalar and vector versions respectively, of the 

method RT0 – the Raviart-Thomas mixed finite element method of the lowest order –, for equations 

with normal derivative or flux boundary conditions. In the case of Lagrange finite elements a 

theoretical justification of our approach's optimality was given in [7]. In a forthcoming paper we 

intend to extend this study to the Hermite variant of the RT0 method, and eventually to the whole 

Raviart-Thomas family of mixed methods (cf. [6]).  

Incidentally we observe that in case Neumann boundary conditions are prescribed, optimality of 

Lagrange finite elements can only be recovered if the variational problem's right hand side is modified. 

Referring to Figure 1 this modification consists of shifting boundary integrals for elements in Sh to the 

curved boundary portion of an element sufficiently close to the one of the corresponding curved 

element T '.  However this is an issue that has nothing to do with our method, for it is basically aimed 

at resolving those related to the prescription of degrees of freedom, in the case of Dirichlet boundary 

conditions.  

As the reader has certainly noticed, our method leads to well-posed problems, though with a non 

symmetric matrix. Moreover in order to compute the element matrix and right hand side vector for a 

boundary element in Sh, in principle it is necessary to determine the inverse of an n x n matrix, where 

n is the number of local degrees of freedom of the method under use. However this extra effort should 

by no means be a problem at the current state-of-the art of Scientific Computing, as compared to the 

situation by the time isoparametric finite elements were introduced.  

Finally the author would like to stress that his technique applies without any particular difficulty, to 

the extremely important three-dimensional case. An ongoing work of his is aimed at supporting this 

assertion.  
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