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Abstract

This paper introduces a new kind of cutting and packing problem (C.P.P.):

the Product Size Reduction (P.S.R.). The cutting and packing problems are

widely studied as NP-hard problems. The cutting and packing problems can

be set by using different models. To solve those problems, optimization al-

gorithms, such as conventional heuristics, meta-heuristics and tree search, are
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used. In addition, those algorithms may rely on positioning strategies. Usu-

ally, the loading problems are focused on logistics problems such as container

or storage loading efficiency, whereas P.S.R. problems are related to electron-

ics, transport and energy industries. The aim of this work is to solve a real

case P.S.R. problem using a Particle Swarm Optimization (P.S.O.) algorithm.

This case has two main features. First, all dimensions may vary between spe-

cific boundaries. Secondly, some objects have position constraints. A discrete

space model has been built to simulate the objects loading. The optimization

process is based on waterfalls objective-function (W.O.F.). Constraints are

ordered and tested one after another. Depending on which constraints are ful-

filled or not, a particular objective function is selected from a set. The P.S.O.

algorithm manages to find a solution reducing significantly the volume.

Keywords - Cutting and packing problem/Product size reduction/Waterfalls

objective function/Optimization/Particle Swarm Optimization
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Table 1: Nomenclature

Notations Unit Description
di, j mm Dimensions of object i, for axis j

Em, j mm Minimal position for all objects, for axis j
EM, j mm Maximal position for all objects, for axis j

f objective function
fk k-th objective functions of the W.O.F. set

gbest PSO algorithm particules global best result
i objects increment, i = 1, · · · , p
j dimensions increment, j = 1, · · · ,n
k Objective functions increment, k = 1, · · · ,w
n Number of dimension, here n = 3

Oi Object i to set
p number of objects, here p = 11

pbest PSO algorithm particule personal best result
ri Object i orientation
t PSO algorithm current iterate

ui fixed orientation value for object i
v PSO algorithm particule velocity vector
V mm Explicit object volume
w Size of W.O.F. set, here w = 4

W,D,H mm Explicit object dimensions, along x, y, z axises
x PSO algorithm particule position vector

xi, j mm Position of object i, for axis j
X ,Y,Z mm Explicit object positions, along x, y, z axises

1 Introduction

In an industrial context, the effective space utilization is a real problem. It is very

common subject in the logistic management. The main idea of C.P.P. is to set objects

in space in order either to reduce or to maximize the used space ratio as shown in

Figure 1. C.P.P. can be seen as geometric assignment problems : the goal is to

distribute a set of cuboid objects in one cuboid containing space as an objective

function is optimized and two basic geometric feasibility conditions hold (all objects

lie entirely within the containing space and the objects do not overlap). From last

decades, the number of publications about C.P.P. as widely increase. Nowadays,
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the most investigated case is the strip packing problem [1] consisting in loading a

portion of a container. This paper discusses a new type of C.P.P., the Product Size

Reduction (P.S.R.). The main idea of this problem is to set product components in

order to reduce its size, with regards of design constraints. This point is very original

compared to classical C.P.P.. Indeed, both the nature and the aim of this problem

are different from others C.P.P.. This problem comes from the will of a company

to reduce the size of an existing product, a rack. A new aspect is introduced in the

problem: the design aspect. P.S.R. is related to electronics product, transport and

energy industries.

C.P.P. problems are NP-hard and belong to the class of combinatorial optimiza-

tion problems. NP-hard meaning that the time to solution increases exponentially

as the size of the problem increases. They can be classified according to [2] classifi-

cation. C.P.P. typology is a 3 steps one presented in Figure 2. The following criteria

are required to fully classify a C.P.P..

Objective : Different objectives are possible. A problem may be to minimize a

value, usually one dimension of the space, or to maximize it, as for instance,

the space usage ratio.

Dimensions : Dimensions of the space(s) may be fixed, as for a cargo container, or

variable, as for a piece of raw material, in which part will be cut. In variable

dimensions case, one or several dimensions may vary.

Object heterogeneity : If all objects to set are the same, they are homogeneous,

otherwise they are heterogeneous. The difference between strongly and weakly

heterogeneous comes from the number of objects of a kind. If, in average,

there are more than 6 objects of a kind, the problem is consider weekly het-

erogeneous [3].

Space heterogeneity : Some problems use several containing spaces to set objects,
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as for instance in the bin packing problem. In this case, spaces, like objects,

may be homogeneous, strongly heterogeneous or weekly heterogeneous.

Number of dimensions : C.P.P. may be 1, 2 or 3 dimensions problems.

Additional constraints : Any constraints changing the nature of the problem.

If for a criteria, a problem does not belong to a case, it is a variant of a C.P.P.. If

a problem has non orthogonal or non homogeneous material object or space, then

it is also a variant of a C.P.P.. Objective, dimensions and object heterogeneity are

required for the first step, detailed in Figure 3.

For each basic problem, many refined problems exist [2]. Only one example

is stated for each problem. Though there are a C.P.P. typology. Refined problem

names are not normed meaning that, in literature, a problem may have several name,

as a name may refer to different problems.

There is 2 ways to set objects in space, either you do it directly as in [4], by

setting coordinate, or un-directly, by using a positioning strategy as in [5]. Most of

the time objects are set un-directly. Positioning strategies are meant to set object one

after one. They often require the containing space to have an origin. Most of them

have been design for 3D cuboid object and space. Positioning strategies include :

Layer and/or Wall : Objects are set so that they build walls and/or layers [3]. A

width is usually defined based on the first set object. Objects can’t be set if

they outreach this width. Walls and layer often relies on stacks.

Stack : Objects are put one after one on each others top in order to build stack [3].

It may be use as an improvement to set several object at a time.

Reference point : The principle is that the solving process will try to set object at

a list of possible positions given by reference point. When an object is set, the

reference point where it belongs is replaced by the limits of the object along
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each axis, with the previous point as a reference. With 3D cuboid object, it is

like replacing the origin corner of an object by the 3 corners along the x,y,z

axis [6].

Extreme points : It is similar to reference points. In the case of 3D cuboid objects,

the original point will be replaced by all the other corners [7].

Maximal space : This strategy considers free space to position objects. Objects

will be set at the origin corner of the biggest free space. Everytime an object

is set, up to n new free space will be created from the former space. For each

axis, A new space is created by cutting the occupied portion of the former

space [8].

Cage bin : Cage bin is the smallest virtual object containing all set objects. the

gaol of this strategy is to keep it as small as possible [6].

D.B.L.F. : Deepest-bottom-lef fitt (D.B.L.F.) is setting objects at the deepest, then

closest to the bottom, then leftest point possible [9]. Usually it works with

reference points. It is like sorting free position by alphabetic order and trying

every object, one after one, until one can fit. If no object can fit in, the position

is removed from the list of free position.

Anchor distance : It is similar to D.B.L.F. exept that free position will be sorted

by their normed distance to the closest corner of the space [8]. As one may

notice it works only with fixed dimensions space.

Best fit : Objects are set in a way that the area in contact with others objects is

maximized [10].

First fit : Objects are set at the first possible position. Due to its simplicity, this

strategy is commonly used [11].
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Some techniques may be used to improve the process.

Sorting : Object are sorted, ussually from the higher volume to the lower one, in

order to be set in a more efficient way [12]. It is the most common improve-

ment done.

Block building : Assemble objects into block to set several object at a time [7].

Moving along axis : after an object being set, a subroutine will try to move it along

each axis, in the origin direction [6].

Inflating : After an object is set, a subroutine will try to increase its dimensions

on every axis at the same time until a collision occured. after doing so the

subroutine will try to replace the original object by a new bigger one that can

be included in the inflated object [13].

Shuffeling : From time to time a subroutine will remove objects from a space and

replace them in a new random order [13].

Shacking : from time to time, objects will be moved from one corner of the space

to the opposite one and back [14].

Reference length : Objects cannot be set if they overreach the reference length

along an axis. When no object can be set, this reference length is increased

[7].

Another feature of those problems is the requirement to develop powerful nu-

merical tools to handle the wide variety and complexity of shapes that need to be

packed. A C.P.P. problem is a complex optimization geometric modeling in high-

dimensional space with nonconvex and disconnected space of possible solutions. In

literature, four different ways to numerically model C.P.P. have been found. Each

of them have properties, advantages and drawbacks that can be found in Table 2.

7



M.I.L.P. (mixed-integer linear programming): It consists of using a mathemat-

ical model of the problem, based on a set of equation and in-equation [15].

It requires a good understanding of the problem. The harder the problem the

harder it will be to implement the model.

Cuboid shape : Consists of simulating cuboid shape loading in order to solve the

problem [16]. Objects have properties, such as dimensions, position or ex-

tremity, that are set, modified and used for computation. This modeling can-

not solve exactly problems with complex shape which is not a big issue as

C.P.P. are focused on logistics where most of the application rely on cuboid

shape.

Discrete space : In this modeling objects and space are composed of discrete ele-

ments [17]. Usually, unit length cubes are chosen. As in cuboid shape objects

loading is simulated. Discrete space may require substantial computational

resources. This model is a good compromise between solution quality and

efficiency for problems involving complex shapes.

Complex shape : Consists of modeling objects the same way a CAD software does

it [12]. This kind of modeling requires either to use a CAD software or to

recreate some of its features. Complex shape is the only way to solve exactly

C.P.P. with complex shapes. Unfortunately, it is hard to implement, explain-

ing why its almost never used.

As specified before, A C.P.P. problem is a complex optimization problem. Due

to its complexity, three type of approaches are usually used to solve it [18].

Conventional heuristics : Heuristic algorithm [19] are defined as a methods spe-

cific to a problem to find a satisfying solution in a short amount of time. This

definition is large and can include many algorithm such as constructive coop-

erative coevolution, memetic, gaussian adaptation or GRASP algorithm.
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Metaheuristics : Meta-heuristic algorithm are diferent from heuristic so they are

meant to be generic and not to solve a particular type of problem. They in-

clude many well-known optimization algorithm famillies such as Genetic al-

gorithms [20], Ant Colony Optimization [21, 22], Particle Swarm Optimiza-

tion [23], Artificial Bee Colony (ABC) [24]

Tree-search-based methods [3] : Those algorithm are used in the case where prob-

lem could be solved one step at a time. At each steps the algorithm consider

every solution as a branch of a tree. After testing all solution the best one is

chose and the algorithm goes to the next step.

2 Product Size Reduction

This section introduce the P.S.R. problem to be solved. First, problem character-

istics will be discuss (2.1). Then, object position and problem constraints will be

detailed in sections 2.2 and 2.3. Finally, Problem will be stated (2.4).

2.1 Overview

According to C.P.P. typology, P.S.R., presented in Figure 4, is a 3D open dimension

problem. Indeed, the goal is to minimize a value, the volume occupied by objects.

At least one dimension is not fixed, all in this case. The objects are strongly het-

erogeneous, though it could have been otherwise. It is a 3D case. This problem is

special instance of P.S.R. as it has additional constraints, the one about objects po-

sition. Actually, this P.S.R. has two interesting features. First, all dimensions may

vary under limits, meaning no dimension of the product can be increased. Second,

some components have position constraints. This will be detailed in section 2.2.

The problem presented in this paper is a real life industrial problem, where a

company wants to reduce the size of an already existing product. In this P.S.R.
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problem, 11 electronic components have to be set in a rack. Details of components

can be found in Table 3.

2.2 Objects position

In this case, the objects are oriented along axis. So, every object position is given

by three translations and one orientation [6]. Indeed, for a cuboid form if directions

along an axies are not taken into account, there are only six possible orientations

instead of twenty four [17]. Possible orientations can be found in Figure 5. For

every translation, there are 500 possible values, corresponding to the 500 elements

side discrete working space detailed in 3.2. As a reminder from 3, there are 11

objects of 9 kinds. Every object has 3 translations (500 possible values each) and

1 orientation (6 possible values). By an easy computation, it can be deduced that

there are more than 8 billions possible solutions to this problem. A small amount of

them will satisfy the constraints.

2.3 Constraints

This problem main constraint is that objects cannot overlap. On the opposite, full

support [16], guillotine cut [25] or weight repartition [26] constraints are not ap-

plied to this problem. Full support means that objects have to stand, completely,

on the bottom of the space or on top of another object. As mentioned in Section 1,

some objects have position and/or orientation constraints [27]. For instance, some

components should be set in the front of the rack, meaning their x coordinate should

be the lowest of all components. As objects are position according to the space and

not to other objects they have absolute position. According to [27], this constraints

applies to only 2.5% of literature.

10



2.4 P.S.R. statement

P.S.R. problem goal is to minimize the volume occupied by all objects. In This ap-

proach, volume evaluation is based on the volume of the smallest cuboid containing

all the objects. To this end, the minimal (resp. maximal) position of all the objects

is evaluated for each axis as follows :

∀ j = 1, · · · ,n Em, j = min
i=1,··· ,p

{
xi, j
}

(1)

∀ j = 1, · · · ,n EM, j = max
i=1,··· ,p

{
xi, j +di, j

}
(2)

Then the volume is defined as a simple product of n = 3 lengths :

f (Em, j,EM, j) = ∏
j=1

n (EM, j−Em, j
)

(3)

As mentioned in section 2.3, P.S.R. is constrained. Two types of constraints are

defined. Equations (4) and (5) are respectively for position and orientation con-

straints. Equation (4) states that for any object, for every axis, it is not allowed that

lowest object lower limit is inferior to space lower limit or that highest object upper

limit is higher than space upper limit. Equation (5) states that there is a list of dual

values defining that a given object’s orientation must be equal to a fixed value.

(C1) ∀(a,b), (xa.b = Em.b)∨ (xa.b +da.b = EM.b) (4)

(C2) ∀(k,ui), rk = ui (5)

Equation (6) states that objects should not overlap. It states that for any couple of

objects, it is not allowed that, for all axis, first object lower limit is inferior to second

object lower limit and first object upper limit is superior to the second object lower
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limit.

(C3) ∀(i1, i2),
(
∀ j, !

(
xi1. j +di1. j > xi2. j)∧ (xi1. j < xi2. j

))
(6)

Finally, the P.S.R. problem can be formulated as a classical optimization prob-

lem under constraints: 
min f (Em. j,EM. j)

+ (C1), (C2), (C3)

(7)

3 Solving Approach

This section present the approach used to solve the P.S.R. problem. First, the overall

approach will be presented (3.1). Second, the chosen numeric model will be disused

(3.2). Third, the model functioning will be detailed (3.3).

3.1 Global Approach

A direct positioning approach has been chosen. Indeed, even if un-direct position-

ing is more efficient, it does not fit well with the position constraints. Un-direct

positioning relies on positioning strategies, wich tends to set objects on deepest-

bottomest-leftest position available. Though, it may be tough, or impossible, using

those strategies, to set objects so they are in one face of the product. In this section,

an overview of the whole solving process is presented. It can be seen in Figure 6.

The heart of the solving approach is the loop between the optimization soft-

ware and the numerical simulation, which is the discrete space representation of

the P.S.R. problem. Optimization process searches the best positions for objects

thanks to an algorithm trying configuration. Every time the optimization software

tries a configuration, it sends it to the simulation, which is giving back the results.

The optimization software solves the optimization problem given by equation (7).

It requires classical data : design variables, objective function, constraints and al-
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gorithm settings. For this optimization case, the design variables are objects trans-

lations and orientations. The simulation also needs some information, like spaces

dimensions, objects dimensions or objects locked positions. Indeed, it has been cho-

sen to replace, inside the simulation, some variables values by others to fix some

objects in space. Fixing some objects along axis is the easiest way to solve po-

sition constraints without having objects to diverge in space. Models information

are set directly inside the model. Optimization case and model information rely on

some preliminary computations, such as defining the side length of an element of

the discrete space. Those computations depend on the problem and should be done

again every time a new P.S.R. problem has to be solved. Finally, when the loop

between Optimization software and simulation has found a result, result can be ex-

ploited. The result should be implemented, using a CAD software, here freeCAD

[28] (htt ps : //www. f reecadweb.org/), in order to validate and fully exploit it.

3.2 Discrete Space

To avoid confusion the difference between space, dimensions and volume, should

be stated. A space is a n dimensions area, in which objects are set. As a finite

dimensions space is used, for each dimension, the space as a beginning and an end.

The product of those lengths is the volume (Equation 3).

A discrete space model has been used to solve this problem. This choice has

been made to be able to take into account eventual complex shape. The space is

made of 5mm side length cube. The overall space is a 500 elements side cube.

Those sizes has been chosen to match system memory capacities.

To solve this problem, 4 spaces has been defined.

• The overall space is the simulation discrete space.

• The working space is the space where objects should be set to have a chance
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to solve the problem.

• The current space is the size of the existing rack.

• The target space is the goal to reach.

All spaces origins are at the deepest-bottom-left corner. The work space position,

relative to the overall space, is so that their centers share the same position. Position

of Current space and target space depends on objects position in overall space.

3.3 Simulation

As described in Section 3.2, the solving process relies on a numerical simulation.

An explanation flowchart of this simulation can be found in Figure 7.

In order to converge to the optimal solution, a new type of objective function

has been implemented: waterfalls objective-function. W.O.F. is a way to take con-

straints into account, close to constraints relaxation [29] and constraints ordering

methods [30]. Constraints relaxation uses constraints to reduce space search. Con-

straint ordering methods are so that problem is solved by a decision tree where con-

straints are added one by one at each step. In W.O.F. case, constraints are ordered

and tested one after another. Depending on which constraints are fulfilled or not,

a particular objective-function is selected from a set. The flowchart 8 presents this

case W.O.F.. Note that it is very important that objective-functions outputs intervals

do not overlap. This is the hardest part of the W.O.F. implementation.

4 Optimization Algorithm

This section highlight the P.S.O.-starcraft algorithm used to solved this problem

[31]. In a first time, regular P.S.O. features will be presented (4.1). In a second

time, P.S.O.-starcraft particularity will be detailed (4.2).
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4.1 P.S.O.

To solve problem (7), a P.S.O. algorithm (Particle Swarm Optimization) has been

used. It is a global optimization algorithm described as sociologically inspired. The

Particle Swarm Optimization (P.S.O.) algorithm belongs to the category of swarm

intelligence techniques. In P.S.O., each solution of the optimization problem is

regarded as a particle in the search space, which adjusts its position in the search

space according to its own flying experience and the flying experience of other

particles [32]. The P.S.O. algorithm has only a small number of parameters which

need to be adjusted and is easy to implement.

In a basic P.S.O. algorithm, members of a swarm fly in the search field (of n

dimensions) and each member is attracted by its personal best solution and by the

best solution of its neighbours [33]. Each particle has a memory storing all data

relating to its flight (location, speed and its personal best solution). It can also

inform its neighbors, i.e. communicate its speed and position. This ability is known

as socialization. For each iteration, the objective function is evaluated for every

member of the swarm. Then the leader of the whole swarm can be determined: it

is the particle with the best personal solution. The process leads at the end to the

best global solution. At each iteration t , the location and speed of one particle are

updated as follows:

 Vt+1 = ωt Vt + c1r1(pbest−xt)+ c2r2(gbest−xt)

xt+1 = Vt+1 +xt

(8)

pbest is the personal best previous position of the particle and gbest is the best

global position among all the particles in the swarm (Figure 9). The parameters r1

and r2 are two random numbers between 0 and 1. The constant c1 and c2 represent

trust parameters indicating how much confidence the current particle has in itself
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and how much confidence it has in the swarm. Theses acceleration constants c1 and

c2 indicate the stochastic acceleration terms which pull each particle toward the best

position attained by the particle or the best position attained by the swarm. The role

of the inertia weight ω is considered important for the convergence behaviour of

P.S.O. algorithm. The inertia weight is employed to control the impact of the previ-

ous history of velocities on the current velocity. Thus, the parameter ω regulates the

trade off between the global (wide ranging) and the local (nearby) exploration abil-

ities of the swarm. A proper value for the inertia weight provides balance between

the global and local exploration ability of the swarm, and thus results in better solu-

tions. Numerical tests imply that it is preferable to initially set the inertia to a large

value, to promote global exploration of the search space, and gradually decrease it

to obtain refined solutions. Weight of particles is decreasing through time in order

to fit the search area shrinking. The weight is decreasing according to the equation

(9) law: 
wt = wmax−∆.(t)/(itmax)

∆ = wmax−wmin

(9)

An improved version of P.S.O. is used: BSG-Starcraft Radius improvements

[31].

4.2 P.S.O.-starcraft

P.S.O.-starcraft has two improvements compared to the original one. First, the ra-

dius improvements. A swarm radius is computed using an infinite norm. If this

radius is inferior to a certain value the algorithm stop as it considers it has found a

global solution. Radius notion is displayed in Figure 10.

Second, a starcraft improvement. At each iteration, there is a probability that

the leader sends a group of new random fast particles called raptors as shown in 11.
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If one raptors find a better solution than the leader, the whole swarm will move

to this position, conserving its geometry with respect to the leader. A pseudo code

of the P.S.O.-starcraft algorithm can be found in algorithm 1.

Algorithm 1 P.S.O. starcraft pseudo code
Require: Initialization

1: Initialize n particles : random position (x), weight (w) random velocity (v)
2: Evaluate particules ( f )
3: Find particles personal best (pbest) and global best (gbest)
4: compute swarm radius (r)
5: while t ≤ tmax and r < threshold do
6: gbest become the carier
7: if random > startcra f t− threshold(st) then
8: create nr random raptors : random long range displacement from the carier
9: Evaluate raptor ( fraptors)

10: find the best raptor (rbest)
11: if f (rbest)< f (gbest) then
12: jump the swarm to the best raptor position
13: end if
14: end if
15: evaluate particules ( f )
16: update personal best (pbest), global best (gbest), velocity (v), weights (w) and

position (x)
17: compute swarm radius (r)
18: end while

Table 4 gives settings used values for the P.S.O.-starcraft algorithm. If a value

is between braces it means it has no impact on algorithm behaviour in this case.

5 Results and discussion

This section discuss result obtained thanks to the methods presented in previous

sections. Results presented in section 5.1 have been implemented as in section 5.2.

Some issues have been faced (5.3).
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5.1 Result

Table 5 highlights the product size reduction. At the end, the rack volume has been

reduced by 12%. The client is mostly interested by reducing the width, which has

been reduced by 8%.

Figure 12 displays the components organization in space before and after op-

timization. Detail of components position is summed up in table 6. The 2 main

differences are, first the biggest components has moved from the left side to the

right one and second, similar components are packed.

5.2 Implementation

The problem has been solved using a computer with the specifications presented in

table 7. My-OCCS optimization software [34] (htt p : //my−occs. f r/so f tware.htm)

has been used to solved this problem. To solve this problem, 7239 iterations were

required, which last about 3 hours with the defined computer (1.6 seconds per iter-

ation in average). So, using only one core, model execution, takes about 400 ms.

5.3 Issues

Many issues have been faced. At the beginning objects tend to move freely into

overall space until some of them try to go outside leading to computer crash. To

fix this, some variables values, corresponding to translation, are replaced by fixed

a values, so that for every axis at least one object is fixed. Object with position

constraints are fixed in priority. Most of the issues faced were related to memory

limitations and model efficiency requirements to have an accepatble computational

time. To solve those issues, the following elements have been used : reduce overall

and working spaces sizes, increase discrete space unit element side length, collect

information along the loading process to make collision computation easier, im-
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prove collision function. The hardest issues faced was the way to take into account

constraints into the objective function computation. It has been faced by using

W.O.F. has mentioned in section 3.3.

6 Conclusion

This paper has introduced a new kind of cutting and packing problem: Product Size

Reduction. This problem comes from the will of a company to reduce the size of its

existing rack.

P.S.R. is a 3 dimensions open dimension problem with 2 interesting features, all

dimensions may vary under limits and some components have position constraints.

This P.S.R. has 11 objects. Every object position is given by 3 translation and 1

orientation among 6. This leads to more than 8 billion possible solutions. Collision

constraints are considered. The goal is to minimize the volume occupied by all

objects and how to check constraints.

A direct positioning approach has been chosen. The heart of this approach is

the loop between optimization software and simulation. To settle this approach , the

optimization software requires optimization case and simulation needs information.

Optimization case and model information rely on some preliminary computations.

The result, obtained by this approach, should be implemented in a CAD software

for validation and exploitation. The P.S.R. has been solved by the P.S.O.-starcraft

algorithm. I

The following results have been achieved. The rack width has been reduce by

8% and the volume by 12%. Similar components have been packed.
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Table 2: Model Characteristics

M.I.L.P. Cuboid
shape

Discrete
space

Complex
shape

Nature Math.
Model

Simu. Simu. Simu. -
CAD

Complex object No No Approx. Yes

Model efficiency +++++ ++++ ++ +

Implementation
easiness

++ +++++ ++++ +

Popularity ++++ +++++ ++ +

Table 3: Objects details

Object NB W D H Position Orientation
Object 1 1 400 210 60 Bottom
Object 2 1 335 290 240
Object 3 1 120 240 260 Front Depth
Object 4 1 80 40 110 Front Depth
Object 5 1 100 80 45 Top —

bottom
Heigth

Object 6 1 50 100 30 Front Depth
Object 7 2 120 200 40
Object 8 2 260 30 60
Object 9 1 60 100 90
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Table 4: P.S.O. starcraft settings

Parameter Value Remarks

d 44 Number of design variables

Itmax 10000 Iteration limit

n 100 Number of particles of the swarm

c1 1 Personnal best factor

c2 1 Global best factor

wmin 0.7 Minimal inertia factor

wmax 0.9 Maximal inertia factor

Radius 0 Activation of radius 1 else 0

rt (10) Number of iteration inside radius to stop

Starcra f t 0 Activation of starcraft 1 else 0

st (0.9) Starcraft activation probability

ra (2) Raptor jump factor

nr (10) Number of raptors

Table 5: Result

Rack W D H V

Initial 510 525 260 69.62

Final 470 500 260 61.10

.

Figure 1: C.P.P. main idea
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Table 6: Components position

Components Color X Y Z W D H

Object 1 Purple 0 385 0 400 60 210

Object 2 Grey 0 50 0 290 335 240

Object 3 Orange 350 0 0 120 240 260

Object 4 Yellow 290 0 175 40 110 80

Object 5 Brown 190 0 0 80 45 100

Object 6 Blue 300 0 30 50 100 30

Object 7.1 Green 310 280 5 120 40 200

Object 7.2 Green 310 320 5 120 40 200

Object 8.1 Red 440 240 0 20 260 60

Object 8.2 Red 440 240 60 20 260 60

Object 9 Black 290 180 25 60 90 100

Table 7: Computeur specifications

Component specification

Computeur ASUS DESKTOP-B140V12 Z10PE-D16 WS

Motherboard Asus Z10PE-D16WS

Processor 2 x (Intel(R) Xeon(R) CPU E5-2620 v3 @
2.40GHz, 6 cores, 12 Threads)

RAM 64 GB - 8 x ( Micron crucial Premium memory
8GB DDR4-2133)

Graphic
Card

Saphire R250 (R7)

OS Windows 10 Professionnal

29



CPP

Basic
Problem

Refined
Problem

Problem
Instance

Objective
Dimensions

Objects heterogeneity

Spaces heterogeneity
Number of dimensions

Additional constraints

CPP
Variant

.

Figure 2: C.P.P. Typology steps
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Figure 3: C.P.P. Typology
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Figure 4: P.S.R. main idea
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Figure 5: Objects Orientations
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Figure 6: Approach overview

32



Preliminary :
Workspace dimensions

Actual container dimensions
Target dimensions

Objects dimensions
Objects locked positions

Optimisation :
Objects translations

& orientations

Set objects in workspace

Compute occupied space Compute collision Compute position penalty

Deduce case

Compute appropriate
objective-function

Waterfall Objective-Function

Return result

Set objectsSet Workspace

.

Figure 7: Simulation flowchart

33



Are all objects
inside workspace ?

No

Yes

f1 : 5 +
occupied space / workspace [0;+inf)

Are all constraints
fulfill ?

No

Yes

f2
 
: 2 +

Collision penalty [0;1] +
Position penalty [0;1] +

Occupied space / current space [0;1]

Are all objects
inside target space ?

No

Yes

f3
 
: 1 +

Occupied space / current space [0;1]

f4 :
Occupied space / target space [0;1]

0 < f4 < 1

1 < f3 < 2

2 < f2 < 5

5 < f1

Objective function result
f: f1 V f2 V f3 V f4

Point to compute

0 < f

.
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Figure 9: P.S.O. displacement
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Figure 11: P.S.O. starcraft
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Figure 12: Object positions
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