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ABSTRACT 

This paper presents a methodological approach based on the homotopy and 

perturbation methods for thermal buckling and post-buckling analyses of the 

anisotropic laminated plates with temperature dependent properties. A power law 

distribution in terms of temperature is used and the structure is subjected to a 

uniform temperature variation. A mathematical formulation that may account for 

various temperature dependent models is elaborated. Power series expansions of 

the displacement and the temperature are developed and the finite element method 

is used for numerical solutions. The critical buckling load and the post-buckling 

equilibrium path of plates under thermal loading are investigated. The effects of 

temperature dependent properties, structure geometry and boundary conditions on 

the thermal buckling and post-buckling behaviours are evaluated through 

parametric studies. 

 

Keywords : thermal buckling and postbuckling/finite element 

method/homotopy method/laminated composite plate/temperature-dependent 

properties. 

 

 



3 

 

Nomenclature:  

 

 

𝐴𝑖𝑗: component of extensional stiffness of laminate U: vector of the nodal displacement of the 

plate 

b: width of the plate T: temperature 

𝐵𝑖𝑗:component of  bending-extensional stiffness of laminate 𝑇0: free stress temperature 

𝐷𝑖𝑗: bending stiffness of laminate x, y and z : coordinates on the middle surface 

of a plate 
𝐸1 , 𝐸2 : Young's modulus in the fiber and transverse 

to the fiber direction 
 : Lamination angle 

𝜈: Poisson’s ratio of lamina 

𝐺12: Shear modulus 𝛼𝑖𝑗: coefficient of thermal expansion 

h: total thickness of the plate 

ℎ𝑘:  thickness of the 𝑘𝑡ℎ core layer 

𝛥 T : temperature rise (𝛥T =T-T0) 

L: length of the plate 

𝑄𝑖𝑗 : material stiffness coefficients 

 

 

 

 

 

 

 

 

 

 

 

 



 

1. Introduction  

Thin-walled structures such as beams and plates can become unstable at a 

relatively low temperature and buckle in the elastic region. Composite plate 

structures are often subjected to elevated temperatures. In such circumstances, high 

thermally induced compressive stresses will be developed in the constrained plates 

and consequently will lead to buckling.  

Since they retain considerable post-buckling strength beyond the thermal 

buckling load, it is quite advantageous to make use of the post-buckling 

characteristics in practical design. Most of the investigations on the subject of 

thermal post-buckling have been devoted to thin structures, [1,2] in which the 

elastic and thermal properties are considered  independent of temperature. 

Most of the investigations on the subject of thermal buckling do not involve the 

effect of temperature-dependent material properties. However, elastic and thermal 

properties are known to vary with the change of temperature. The temperature-

dependent material effect lowered the critical buckling temperatures and increased 

the post-buckling deflections. The investigation of thermal post-buckling of 

laminated composites, considering material degradation using finite element 

methods, and the static buckling of composite and sandwich plates under thermal 

loads using layer wise plate theories are presented in [3,4,5]. 

The aim of this paper is the development of a path following algorithm to calculate 

the critical thermal buckling and the post-buckling equilibrium path using an 

asymptotic numerical method [6-7].Temperature-dependent elastic and thermal 

properties are considered. A power law distribution in terms of temperature is used 
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and the structure is subjected to a uniform temperature change. The effects of 

temperature dependent properties, structure geometry and boundary conditions on 

the thermal buckling and post-buckling behaviours are evaluated through 

parametric studies. A mathematical formulation that may account for various 

temperature dependent models is proposed. Power series expansions of the 

displacement and the temperature are developed and the finite element method is 

used for numerical solutions. 

2. Finite element formulation 

A general composite laminated plate with constant thickness h is considered here. The 

rectangular coordinates x, y and z are taken on the middle surface of a plate as shown in 

(Fig. 1). The kinematic plate model is based on the first-order shear deformation theory. 

The present work focuses on thermal buckling and post-buckling behaviors of 

anisotropic laminated composite plate with temperature-dependent material 

properties. The material properties, such as Young’s moduli Ei and thermal 

expansion coefficients   𝛼i, can be expressed as a linear function of temperature ‘T’ 

as: 

𝐸1(𝑇) = 𝐸10(1 + 𝐸11𝑇) , 𝐸2(𝑇) = 𝐸20(1 + 𝐸21𝑇) , 𝐺12(𝑇) = 𝐺120(1 + 𝐺121𝑇) , 

𝛼1(𝑇) = 𝛼10(1 + 𝛼11𝑇) , 𝛼2(𝑇) = 𝛼20(1 + 𝛼21𝑇),                                          (1) 

The Poisson coefficient  is considered in this study to be temperature independent. 

The stress-strain relation of the plate, subjected to temperature rise T, is given by: 
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in which [𝑄𝑖𝑗(T) ]are the material stiffness coefficients that are temperature 

dependent. 

The membrane stress and the bending moment resultants, {N} and {M}; and their 

relation to the membrane strains are given by: 
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where the temperature dependent matrices  A, B and D can be expressed as: 

[𝐴𝑖𝑗(𝑇), 𝐵𝑖𝑗(𝑇), 𝐷𝑖𝑗(𝑇)] = ∑ ∫ 𝑄𝑖𝑗(𝑇)(1, 𝑧, 𝑧
2)𝑑𝑧

𝑧𝑚=1

𝑧𝑚
𝑚                  (4) 

The normalized thermal force and thermal moment resultants are defined as 

{𝑁𝑇} = {

𝑁𝑥
𝑇

𝑁𝑦
𝑇

𝑁𝑥𝑦
𝑇

} = ∑ ∫ 𝑄𝑖𝑗
(𝑘)(𝑇) {

𝛼1(𝑇)

𝛼2(𝑇)

𝛼12(𝑇)
}∆𝑇𝑑𝑧

ℎ𝑘+1
ℎ𝑘

𝑛
𝑘=1                       (5-a) 

{𝑀𝑇} = {

𝑀𝑥
𝑇

𝑀𝑦
𝑇

𝑀𝑥𝑦
𝑇

} = ∑ ∫ 𝑄𝑖𝑗
(𝑘)(𝑇){

𝛼1(𝑇)

𝛼2(𝑇)

𝛼12(𝑇)
} 𝑧∆𝑇𝑑𝑧

ℎ𝑘+1
ℎ𝑘

𝑛
𝑘=1       (5-b) 

2.1. Thermal buckling:  

Based on the previous assumptions and using the finite element method, the 

thermal buckling is governed by the following nonlinear eigenvalue problem: 

[𝐾𝑒(𝑇)]{𝑈} = 𝑇([𝐾𝑔0] − [𝐾𝑒1]){𝑈}+𝑇
2[𝐾𝑔01]{𝑈} + 𝑇

3[𝐾𝑔11]{𝑈}    (6) 
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where [Ke(T)] and [Kg(T)] are the resulting temperature dependent stiffness and 

geometric matrices.  

As this nonlinear eigenvalue problem can not be solved with classical codes, the 

homotopy technique [7] is used for numerical solutions. This allows us to introduce 

artificially a parameter ‘a’ in Eq. (6) as  

[𝐾𝑒0]{𝑈} = 𝑇. ([𝐾𝑔0] − [𝐾𝑒1]){𝑈} + 𝐚(𝑇
2[𝐾𝑔01]{𝑈} + 𝑇

3[𝐾𝑔11]{𝑈}) 0 ≤ 𝑎 ≤ 1   

(7) 

A numerical procedure is elaborated herein to compute the critical buckling 

temperatures and the associated eigenmodes. One can easily note that the initial 

problem (6) corresponds to a=1. 

2.2. Thermal post-buckling behaviour 

The critical buckling and the corresponding temperature dependent eigenmodes are 

numerically computed for beams and plates. After the buckling prediction, the 

nonlinear equilibrium equation for the symmetrically laminated beams and plates 

under uniform temperature rise may be expressed as:  

〈𝐿𝑒(𝑇)𝑈, 𝛿𝑈〉 − 𝑇〈𝐿𝑔(𝑇)𝑈, 𝛿𝑈〉 + 〈𝑄(𝑈, 𝑈)(𝑇), 𝛿𝑈〉 = 0                          (8) 

in which Le, Lg are linear operators and Q is a quadratic one that are temperature 

dependent.  These operators are built following the same procedure elaborated in 

[6]. The corresponding matrix operators, Le, Lg, are the linear stiffness and the 

geometric stiffness matrices, respectively. 

2.2.1. Asymptotic numerical method  



 

It should be noted that the variational problem (8) is hardly nonlinear with 

respect to temperature T. A well-adapted numerical procedure is thus required for 

numerical solution. For this aim an asymptotic numerical algorithm is elaborated 

herein to solve the resulting nonlinear thermal problem with a reasonable 

computational cost. This algorithm combines the perturbation technique and the 

finite element.  

The displacement and temperature are expanded into power series around a starting 

solution (U0,T0) in the following form: 

{
 
 

 
 𝑇 = 𝑇0 + 𝑎𝑇1 + 𝑎

2𝑇2 +⋯+ 𝑎𝑛𝑇𝑛
𝑇2 = 𝑝 = 𝑝0 + 𝑎𝑝1 + 𝑎

2𝑝2 +⋯+ 𝑎
𝑛𝑝𝑛

𝑇3 = 𝑐 = 𝑐0 + 𝑎𝑐1 + 𝑎
2𝑐2 +⋯+ 𝑎

𝑛𝑐𝑛
𝑈 = 𝑈0 + 𝑎𝑈1 + 𝑎

2𝑈2 +⋯+ 𝑎𝑛𝑈𝑛

                             (9) 

These power series expansions are used to compute the path post-buckling behavior 

with respect to temperature for various structures geometries and boundary 

conditions. For isotropic materials with the Poisson ratio temperature independent, 

the following variational formulations are resulted. 

〈𝐿𝑒(𝑇)𝑈, 𝛿𝑈〉 = 〈𝐿𝑒0(𝐸𝑖0)𝑈, 𝛿𝑈〉+T〈𝐿𝑒1(𝐸𝑖1)𝑈, 𝛿𝑈〉                           (10-a) 

〈𝐿𝑔(𝑇)𝑈, 𝛿𝑈〉 = 〈𝐿𝑔0(𝐸𝑖0, 𝛼𝑖0)𝑈, 𝛿𝑈〉 + 𝑇(〈𝐿𝑔01(𝐸𝑖1, 𝛼𝑖0)𝑈, 𝛿𝑈〉 +

〈𝐿𝑔10(𝐸𝑖0, 𝛼𝑖1)𝑈, 𝛿𝑈〉) + 𝑇
2〈𝐿𝑔11(𝐸𝑖1, 𝛼𝑖1)𝑈, 𝛿𝑈〉                      (10-b) 

〈𝑄(𝑈, 𝑈), 𝛿𝑈〉 = 〈𝑄0((𝐸𝑖0))(𝑈, 𝑈), 𝛿𝑈〉 + 𝑇〈𝑄1((𝐸𝑖1))(𝑈, 𝑈), 𝛿𝑈〉     (10-c) 

Using homotopy procedure  and the decomposition (10-a-b-c), the finite element 

form of the thermal post-buckling leads to the followingelemental matrixequation: 

〈𝐿𝑒0𝑈, 𝛿𝑈〉 + 〈𝑄0(𝑈, 𝑈), 𝛿𝑈〉 + 𝑇(〈𝐿𝑒1𝑈, 𝛿𝑈〉 − 〈𝐿𝑔0𝑈, 𝛿𝑈〉 + 〈𝑄1(𝑈, 𝑈), 𝛿𝑈〉) +

𝐚(𝑇2〈𝐿𝑔01𝑈, 𝛿𝑈〉 + 𝑇
3〈𝐿𝑔11𝑈, 𝛿𝑈〉) = 0(11) 
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After insertion of series (9) into Eq. (11), one gets the following recurrent linear 

problems that come from the identifications of the like powers of a: 

Order 0: 

〈𝐿𝑒0𝑈0, 𝛿𝑈〉 + 〈𝑄0(𝑈0, 𝑈0), 𝛿𝑈〉 = 𝑇0(〈𝐿𝑔0𝑈0, 𝛿𝑈〉 − 〈𝐿𝑒1𝑈0, 𝛿𝑈〉 −

〈𝑄1(𝑈0, 𝑈0), 𝛿𝑈〉)(12-a) 

Order 1: 

〈𝐿𝑇𝑈1, 𝛿𝑈〉 = 𝑇1(〈𝐿𝑔0𝑈0, 𝛿𝑈〉 − 〈𝐿𝑒1𝑈0, 𝛿𝑈〉) + 𝑝0〈𝐿𝑔01𝑈0, 𝛿𝑈〉 +

𝑐0〈𝐿𝑔11𝑈0, 𝛿𝑈〉(12-b)  

 Order k (k≥2):  〈𝐿𝑇𝑈𝑘, 𝛿𝑈〉 = 𝑇𝑘{𝐹1} +                                     (12-c) 

with: - {𝐹𝑘} = ∑ 𝑇𝑖〈𝐿𝑔0𝑈𝑘−𝑖, 𝛿𝑈〉
𝑘−1
𝑖=1 − ∑ 𝑇𝑖〈𝐿𝑒1𝑈𝑘−𝑖, 𝛿𝑈〉

𝑘−1
𝑖=1 +

∑ 𝑝𝑖〈𝐿𝑔10𝑈𝑘−𝑖−1, 𝛿𝑈〉
𝑘−1
𝑖=0 + ∑ 𝑐𝑖〈𝐿𝑔11𝑈𝑘−𝑖−1, 𝛿𝑈〉

𝑘−1
𝑖=0 −

∑ 〈𝑄0(𝑈𝑖, 𝑈𝑘−𝑖), 𝛿𝑈〉 −
𝑘−1
𝑖=1 ∑ 𝑇𝑖 ∑ 〈𝑄1(𝑈𝑗, 𝑈𝑘−𝑗−𝑖), 𝛿𝑈〉

𝑘−𝑖−1
𝑗=1

𝑘−1
𝑖=1  

- {𝐹1} =  (〈𝐿𝑔0𝑈0, 𝛿𝑈〉 − 〈𝐿𝑒1𝑈0, 𝛿𝑈〉) 

- 〈𝐿𝑇𝑈𝑖 , 𝛿𝑈〉 = 〈𝐿𝑒0𝑈𝑖, 𝛿𝑈〉 + 2〈𝑄0(𝑈0, 𝑈𝑖), 𝛿𝑈〉−𝑇0(〈𝐿𝑔0𝑈𝑖, 𝛿𝑈〉 −

〈𝐿𝑒1𝑈𝑖 , 𝛿𝑈〉)   𝑖 ≥ 1 

in which  

- {

𝑝0 = 𝑇0
2

𝑝1 = 2𝑇0𝑇1
𝑝𝑘 = 2𝑇0𝑇𝑘 + ∑ 𝑇𝑖𝑇𝑘−𝑖

𝑘−1
𝑖=1 = 2𝑇0𝑇1 + 𝐷𝑘, 𝑓𝑜𝑟 𝑘 ≥ 2

 

- {

𝑐0 = 𝑇0
3

𝑐1 = 3𝑇0
2𝑇1

𝑐𝑘 = 3𝑇0
2𝑇𝑘 + 𝐷𝑘𝑇0 + ∑ 𝑝𝑖𝑇𝑘−𝑖

𝑘−1
𝑖=1 = 3𝑇0

2𝑇1 + 𝐴𝑘 , 𝑓𝑜𝑟 𝑘 ≥ 2

 



 

Remember that the left hand sides of the problems Eqs. (12-a,b,c) have the same 

matrix. Thus, only one matrix inversion is needed for all vectors 𝑈𝑗. This 

methodological approach allows computing the power series coefficients 𝑇𝑗and 𝑈𝑗at 

any required order. Based on this approach, the thermal post-buckling equilibrium 

path can be easily investigated for plates with various shapes and temperature 

dependent models 

3. Numerical results 

In this section, firstly, the formulation and the method of solution are validated by 

comparing the results with those available in the literature. Then, the 

resultsforthermal buckling and post-bucklinganalysisof laminated composite plates 

with temperature-dependent material properties are presented. 

The thermal buckling and post-buckling with properties dependent temperature of 

a plate is performed to demonstrate the accuracy and validity of the present 

numerical method.  The plate is simply supported with L=b and L/h=100. 

All the material parameters are taken from Ref. [3].  

𝐸1(𝑇) = 𝐸10(1 + 𝐸11𝑇) , 𝐸2(𝑇) = 𝐸20(1 + 𝐸21𝑇) , 𝐺12(𝑇) = 𝐺120(1 + 𝐺121𝑇) 

𝛼1(𝑇) = 𝛼10(1 + 𝛼11𝑇) , 𝛼2(𝑇) = 𝛼20(1 + 𝛼21𝑇), 𝐸10/𝐸20 = 40, 

𝐺120/𝐸20 = 0,5, 𝛼10 = 10−6℃−1 , 𝛼20 = 10−5℃−1,  𝜈12 = 0,25, 

Materiel1:𝐸11 = −0,5.10−4  , −0,1.10−3  , −0,2.10−3℃−1 

     𝐸21 = 𝐺121 = 𝛼11 = 𝛼21 = 0 

Materiel2:𝐸11 = −0,5.10−3℃−1, 𝐸21 = 𝐺121 = −0,2.10−3 ℃−1 , 

𝛼11 = 𝛼21 = 0,5.10
−3℃−1 ,  
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We validate our methodology for simply-supported(±456)𝑇laminate square plates. 

The temperature change versus the maximum deflection of the plate with the 

variation of 𝐸11 (𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 1) are shown in (Table 1). At the same maximum 

deflection of the plate, the temperature change decreases as the absolute value of𝐸11, 

increases for the simply-supported boundary plate. The results of Chen et al. [3] and 

Shen [6] by using the Finite Element method and Reddy’s higher-order shear 

deformation theory are also displayed for direct comparison. From Table 1, an 

excellent agreement is observed. 

Figure 2 shows the effect of temperature-dependent properties on the thermal post-

buckling behavior of simply-supportedplate. The material properties effect is 

demonstrated for IDT (E11=0), materiel 1 and material 2. 

After comparing the present solutions with those of existing in literature, it is 

observed that the thermal buckling strength has been reduced significantly when the 

temperature-dependent properties are taken into consideration. 

4. Conclusion  

An asymptotic numerical method is employedto compute the thermal buckling and 

post-buckling analysis of laminated plates. The material properties were assumed to 

be temperature-dependent. Plates with different boundary conditions and 

temperature dependent models were considered. After obtaining the thermal buckling 

bifurcation point, the nonlinear equilibrium equations were employed to get the post-

buckling configurations.  The influence of material property with respect to 

temperature considerably affects the thermalbuckling temperature and post-buckling 

path. 
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 Figures :   

 

Figure  1: The geometry of laminate plate 

 

 

 

 

 

 

 

 

 

Figure 2: Influence of temperature dependency of material on post-buckling 

temperature of simply supported squared plate L/b=1 , L/h=100. 
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Tables : 

 Table 1: Comparison of thermal postbuckling loads for (±456)𝑇 laminated square thin plates subjected to an uniform 

temperature rise  

 

 𝐸11 = 0  𝐸11 = −0.5 × 10−4  𝐸11 = −0.1 × 10
−3  𝐸11 = −0.2 × 10−3 

𝑊𝑐/ℎ 

present 

[6] [3] 

 present 

[6] [3] 

 present 

[6] [3] 

 present 

[6] [3]  method   method   method   method  

0 159.19 158.18  159.64  159.43 158.14 159.50  158.20 158.08  159.34  155.80 157.85 158.92 

0.1 160.69 159.47 160.91  160.82 159.43 160.78  159.59 159.38 160.62  157.13 159.16 160.21 

0.2 165.14 163.34 164.72  165.31 163.31 164.60   164.01 163.26 164.46  161.41 163.04 164.07 

0.3 172.53 169.80 171.09  172.88 169.76 170.98   171.47 169.71 170.86  168.63 169.47 170.52 

0.4 182.87 178.85 180.00  183.55 178.79 179.92  181.96 178.71 179.84  178.78 178.41 179.58 

 


