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Résumé :  
 

La simulation des opérations marines, en particulier des opérations de remontée ou de 

descente de colis, nécessite l’utilisation d’une théorie de dynamique multicorps pour les différents 

corps mis en jeu (bateau, câble et colis), d’une théorie hydrodynamique consistante et d’une 

modélisation des câbles. Ce papier présente une nouvelle approche pour simuler ce type d’opération 

basée sur le couplage entre une théorie multicorps et une théorie hydrodynamique. 

La théorie multicorps utilise un formalisme issu de la robotique et un algorithme de 

dynamique directe adapté aux arbres cinématiques pour résoudre les équations de Newton-Euler. La 

modélisation des câbles suit le même procédé. La flexion et la torsion dans le câble ne sont pas prises 

en compte. Cette approche multicorps est comparée à  la théorie câble dite « lumped mass ». 

Les efforts hydrodynamiques sont calculés en supposant un fluide parfait et en faisant une 

hypothèse de type « weak-scatterer ». Cette hypothèse suppose que la composante perturbée du 

potentiel de vitesse du fluide est petite devant sa composante incidente et que les conditions limites de 

surface libre sont linéarisées par rapport à l’élévation de la surface libre incidente. Cet outil est 

couplé au solveur mécanique. Cette nouvelle stratégie de couplage est présentée dans ce papier. 

 

Abstract:  
 

The simulation of marine operations, in particular of lifting or lowering operations, requires 

the modeling of the whole system (ship, cable and payload) along with a theory of multibody 

dynamics, an appropriate hydrodynamic theory and cable’s modeling. This paper presents a new 

approach to achieve this type of simulation based on a coupling between a multibody theory and a 

hydrodynamic one. 

 The multibody theory uses a robotics formalism and a direct dynamic algorithm based on 

recursive techniques for kinematic trees to solve the Newton-Euler equations. The cable modeling is 

based on the same multibody approach. There is neither bending nor torsion effect. This model is 

compared to the classical lumped mass theory. 

 Hydrodynamic loads are computed using a weakly nonlinear potential flow solver based on 

the weak-scatterer hypothesis. This approximation assumes the perturbation component of the fluid 

velocity potential is small compared to the incident one and the free surface boundary conditions are 

linearized with respect to the incident wave elevation. This solver is coupled with the mechanical one 

in order to perform the simulation.  This new strategy to manage the coupling is presented in this 

paper. 

Keywords: marine operations, coupling, weak-scatterer, multibody, cable 
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1 Introduction 
 

With the development of the offshore wind industry, the simulation of the marine operations for the 

installation of wind turbines is required. This paper focuses on the operations of lowering and lifting 

of a payload. DNV published some norms in this field [1]. They are based on a simplified approach of 

the problem (characteristic quantities, regular design wave). Regarding the theory used in the 

commercial tools as Orcaflex [2] or Deeplines [3] for the modeling of the operations of lowering or 

lifting, they use a linear potential flow solver which assumes small amplitude motions of both the ship 

and the payload and cannot solve the unsteady hydrodynamic loads. But their multibody and cable 

solvers are consistent. On the other side, Hannan [4] developed a model based on a fully nonlinear 

potential flow solver but without an appropriate multibody or cable solver. The study presented in this 

paper wishes to have the best for the both approaches: an appropriate multibody/cable solver and a 

consistent hydrodynamic solver. To reach this objective, a weakly nonlinear potential flow solver is 

coupled with a multibody mechanical solver. Doing so, the long term goal is to quantify the interest of 

using this hydrodynamic solver in this kind of marine operation. 

 

2 Multibody theory 
 

The multibody offshore numerical tool used in this paper is InWave [5] developed by Innosea and 

Ecole Centrale de Nantes. It performs time domain simulations of kinematic trees in using a direct 

dynamics algorithm to solve the Newton-Euler equations. A kinematic tree is a set of interconnected 

bodies where each body has only one ancestor and potentially several successors. The base body (the 

only one without ancestor) of the multibody system is floating in six degrees of freedom (dof). 

Between a body (except the base) and its ancestor, there is a joint, revolute or prismatic, granting for a 

single degree of freedom. This multibody approach uses relative coordinates and is parameterized 

using the modified Denavit-Hartenberg parameters [6]. 

 

Figure 1: Kinematic tree (blue = bodies, red = joints) 

 

The Lagrangian formulation of the Newton-Euler equations to solve is: 

 (
𝟎𝟔×𝟏
𝜞
) = 𝑯(

𝑽̇0 
0

𝒒̈
) + 𝑪 (1) 

Where 𝜞 is the vector of the torques (or forces) around (or along) the revolute (or prismatic) joints, 

𝑯 = (
𝑯𝟏𝟏 𝑯𝟏𝟐
𝑯𝟐𝟏 𝑯𝟐𝟐

)  the generalized inertia matrix, 𝑪 = (
𝑪𝟏
𝑪𝟐
)  the vector of the inertia and external 

forces, 𝑽̇𝟎 
𝟎  is the acceleration of the floating base expressed in its own frame and 𝒒̈ the articular 

acceleration of each joint. By definition, a direct dynamics algorithm means 𝚪, 𝑪 and 𝑯 are known 

whereas 𝑽̇𝟎 
𝟎  and 𝒒̈ are unknown. 
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The size of the system is the number of joints plus the dof of the base. The state vector is: 

 𝒀 = [𝜼𝑻 𝝂𝑻 𝒒𝑻 𝒒̇𝑻]𝑇  (2) 

Where 𝜼 is the position of the base in the inertial frame, 𝝂 is the velocity of the base with respect to 

the inertial frame and expressed in the frame of the base, 𝒒 is the vector of the articular positions and 

𝒒̇ is the vector of the articular velocities. 

 

Rongère [7] presented a first approach to simulate the offshore structures and solve the equation (1). 

The algorithm presented in [7] was similar to the Articulated Body Algorithm of Featherstone [8]. The 

inversion of the matrix 𝑯 was not required. An extension of this work was made by Rongère [9] to 

take into account the hydrodynamic interactions in using the Composite Rigid Body Algorithm [8]. 

This modification involves the inversion of 𝑯  and is more suitable to deal with the linear 

hydrodynamic added mass coefficients. The following notations come from [7]. 

 

The first main step of this latter algorithm is the computation of the following kinematic and dynamic 

quantities for each body 𝑗:  

 Transformation matrices 𝑻𝑖 
𝑗 ; 

 Velocities in the body frames; 

 Coriolis accelerations 𝜸𝑗 
𝑗 ; 

 External loads and centrifugal effects 𝜷𝑗 
𝑗 . 

 

The motion equation of the system made of the body 𝑗 and all its successors (which therefore has no 

successor) is: 

 𝑭 
𝑗

𝑗 = 𝒎 
𝑗

𝑗
𝑐 𝑽̇𝑗 
𝑗 + 𝜷 

𝑗
𝑗
𝑐

 
  (3) 

Where 𝒎𝑗
𝑐

 
𝑗  and 𝜷𝑗

𝑐
 
𝑗  are the generalized mass matrix and the generalized load vector of the composite 

body 𝑗. 𝑭 
𝑗

𝑗 is the internal force and moment across the joint 𝑗, connecting the body 𝑗 and its unique 

ancestor. 𝑽̇𝑗 
𝑗  is the acceleration of the body 𝑗 expressed in its frame. 

The aim of the second main step is the computation for each body of 𝒎𝒋
𝒄

 
𝒋  and 𝜷𝒋

𝒄
 
𝒋 : 

 

𝒎𝑗
𝑐

 
𝑗 = 𝒎 

𝑗
𝑗 + ∑ 𝑻 

𝑘
𝑗
𝑇 𝒎𝑘

𝑐
 
𝑘 𝑻𝑗 

𝑘

𝑘 / 𝑎(𝑘)=𝑗

 

𝜷𝑗
𝑐

 
𝑗 = 𝜷𝑗 

𝑗  + ∑ 𝑻 
𝑘

𝑗
𝑇[ 𝒎 
𝑘

𝑘
𝑐 𝜸 
𝑘

𝑘 + 𝜷 
𝑘

𝑘
𝑐 ]

𝑘 / 𝑎(𝑘)=𝑗

 
(4) 

 

Finally, the last step is to build of the matrix 𝑯 and the vector 𝑪. The vector 𝜞 depends on the type of 

the internal loads which are required in the multibody system. 

 

The generalized inertia matrix 𝑯 is defined by: 

 

𝑯𝟏𝟏 = 𝒎0
𝑐

 
0  

𝑐𝑜𝑙𝑘(𝑯𝟏𝟐) = 𝑻 
𝑘

0
𝑇 𝒎 
𝑘

𝑘
𝑐 𝒂 
𝑘

𝑘 𝑓𝑜𝑟 𝑘 ∈ [|1, 𝑛|] 

𝑯𝟐𝟏 = 𝑯𝟏𝟐
𝑇   

𝑟𝑜𝑤𝑗(𝑐𝑜𝑙𝑘(𝑯𝟐𝟐)) = 𝒂 
𝑗
𝑗
𝑇 𝒎 
𝑗

𝑗
𝑐 𝑻 
𝑗
𝑘
𝑇 𝒂 
𝑘

𝑘  𝑓𝑜𝑟 (𝑗, 𝑘) ∈ [|1, 𝑛|]
2 𝑠𝑢𝑐ℎ 𝑎𝑠 𝑘 ≥ 𝑗 

(5) 

 

And the vector 𝑪 is defined by: 

 𝑪𝟏 = 𝜷0 
0 +∑ 𝑻 

𝑘
0
𝑇( 𝜷𝑘 

𝑘 + 𝒎 
𝑘

𝑘
𝑐 𝜸 
𝑘

𝑘)

𝑛

𝑘=1

 (6) 
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𝑟𝑜𝑤𝑗(𝑪𝟐) = 𝒂 
𝑗
𝑗
𝑇 ( 𝒎 

𝑗
𝑗
𝑐∑ 𝑻𝑘 

𝑗 𝜸 
𝑘

𝑘

𝑗

𝑘=0

+ 𝜷𝑗
𝑐

 
𝑗 |

𝒒̈=0𝑛×1
)  𝑓𝑜𝑟 𝑗 ∈ [|1, 𝑛|] 

 

Where 𝑛 is the number of joints and 𝒂 
𝑗
𝑗 the axis of the joint 𝑗 expressed in the body 𝑗’s frame. 

Finally the acceleration can be computed by the inversion of the matrix 𝑯 and the state vector time-

stepped in using a RK4 scheme.  

 

3 Cable modeling using a multibody theory 
 

In an operation of lifting or lowering, a cable is necessary. Several cable libraries are available 

(Map++ [10], MoorDyn [11], etc.). It is easier to use InWave in order to simulate cables rather than 

using an external program which would not be well adapted to the multibody formalism presented in 

2. Consequently we want to compare the cable modeling obtained with a multibody approach to a 

classically cable theory in order to validate this approach. Masciola [12] did a survey of the different 

time-domain cable theories which are commonly used: lumped mass model (low and high order), 

finite-element model and finite-difference model. In another paper, Masciola [13] presented the quasi-

static theory. A simple but consistent cable model to compare with is to use a low-order lumped mass 

theory. Indeed firstly the quasi-static theory neglects the dynamical effects and secondly in a 

lowering/lifting operation the cable stays mainly vertical so the effect of bending and torsion effects 

are not predominant. 

The details of the low order lumped mass model can be found in [14] and [15]. 

 

In the low order lumped mass model, a cable is discretized into massless points. Each point has three 

degree of freedom. To match this description, the multibody theory requires three bodies (of which 

two are massless) to ensure the three degrees of freedom. Thus three joints are used: two revolutes and 

one prismatic. Internal loads are also present in the lumped mass model with axial tension and axial 

damping. For a cable element 𝑗, the components of the vector 𝜞 of the internal loads become: 

 

 

Γ3𝑗−2 = 0 

Γ3𝑗−1 = 0  

Γ3𝑗 = {
−
𝐸𝐴

𝐿𝑢
(𝑞3𝑗 + 𝐿𝑢) −

𝐶𝐴

𝐿𝑢
𝑞̇3𝑗, |𝑞3𝑗| ≥ 𝐿𝑢

−
𝐶𝐴

𝐿𝑢
𝑞̇3𝑗, |𝑞3𝑗| < 𝐿𝑢

 

(7) 

 

Where Γ3𝑗−2  is the internal load of the first revolute joint, Γ3𝑗−1of the second one and Γ3𝑗  of the 

prismatic joint. 𝐿𝑢 is the unstretched length, 𝐸 the Young modulus, 𝐴 the area of the section, 𝐶 the 

damping coefficient, 𝑞3𝑗 the size of the cable element and 𝑞̇3𝑗 the axial velocity. It is assumed there is 

no compression which explained the condition on 𝑞3𝑗. 
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The two approaches (multibody and low-order lumped mass) are used to model a cable of three 

elements.  

The following table summarizes the cable characteristics of the test case. 

 

Linear density (𝑘𝑔.𝑚−1) 100 

Diameter (𝑚) 0.0332 

Young modulus (𝑃𝑎) 7.75e7 

Damping coefficient (𝑁. 𝑠.𝑚−1) 1e5 

Unstretched length (𝑚) 10 

Position of the upper node (𝑚) (0.0 ; 0.0 ; 20) 

Position of lower node (𝑚) (-2.0 ; 0.0 ; 10) 

Table 1: Cable characteristics 

 

The time step is 0.001 s and the duration of the simulation is 10 s. 

 

The figure 2 presents the length of the third cable element for the two models. 

 

Figure 2: Length of the third cable element in using a low order lumped mass theory (red) and InWave (bleu) 

 

Hence the two approaches give the same results, but not with the same CPU time. A lumped mass 

model has only one loop over the cable elements whereas the multibody theory has three loops over 

the multibody system. Moreover, three bodies are necessary to model a cable element. Consequently 

the multibody approach is more time-consuming than the low-order lumped mass model. A way to 

speed up the multibody approach is to walk along the number of cable elements instead of the number 

of bodies. The multibody equations previously presented have to be solved three at a time.  

 

Equation (4), (5) and (6) become: 

 

 
𝒎3(𝑗−1)
𝑐

 
3(𝑗−1) = 𝒎 

3(𝑗−1)
3(𝑗−1) + 𝑻 

3𝑗
3(𝑗−1)
𝑇 𝒎3𝑗

𝑐
 

3𝑗 𝑻3(𝑗−1) 
3𝑗   

𝜷3(𝑗−1)
𝑐

 
3(𝑗−1) = 𝜷3(𝑗−1) 

3(𝑗−1) + 𝑻 
3𝑗

3(𝑗−1)
𝑇 [ 𝒎 

3𝑗
3𝑗
𝑐 ( 𝑇3𝑗−2 

3𝑗 𝜸3𝑗−2 
3𝑗−2 + 𝑻3𝑗−1 

3𝑗 𝜸3𝑗−1 
3𝑗−1 + 𝜸3𝑗 

3𝑗 ) + 𝜷3𝑗
𝑐

 
3𝑗 ] 

(8) 

 𝑯𝟏𝟏 = 𝒎0
𝑐

 
0  (9) 
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𝑐𝑜𝑙[3𝑘−2,3𝑘−1,3𝑘](𝑯12) = 𝑻 
3𝑘

0
𝑇 𝒎 
3𝑘

3𝑘
𝑐 𝑷𝑘 𝑓𝑜𝑟 𝑘 ∈ [|1, 𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠|] 

𝑯𝟐𝟏 = 𝑯𝟏𝟐
𝑇   

𝑟𝑜𝑤[3𝑗−2,3𝑗−1,3𝑗] (𝑐𝑜𝑙[3𝑘−2,3𝑘−1,3𝑘](𝑯𝟐𝟐)) = 𝑷𝑗
𝑇 𝒎 
3𝑗

3𝑗
𝑐 𝑻 
3𝑗

3𝑘
𝑇 𝑷𝑘   𝑓𝑜𝑟 (𝑗, 𝑘) ∈ [|1, 𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠|]

2 𝑠𝑢𝑐ℎ 𝑎𝑠 𝑘 ≥ 𝑗 

 

 

𝑪𝟏 = 𝜷0 
0 +∑ 𝑻 

𝑘
0
𝑇( 𝜷𝑘 
𝑘 + 𝒎 

𝑘
𝑘
𝑐 𝜸 
𝑘

𝑘)

𝑛

𝑘=1

 

𝑟𝑜𝑤[3𝑗−2,3𝑗−1,3𝑗](𝑪𝟐) = 𝑷𝑗
𝑇 ( 𝒎 

3𝑗
3𝑗
𝑐 ∑ 𝑻3𝑘 

3𝑗 ( 𝑻3𝑘−2 
3𝑘 𝜸3𝑘−2 

3𝑘−2 + 𝑻3𝑘−1 
3𝑘 𝜸3𝑘−1 

3𝑘−1 + 𝜸3𝑘 
3𝑘 )

𝑗

𝑘=0

+ 𝜷3𝑗
𝑐

 
3𝑗 )  𝑓𝑜𝑟 𝑗 ∈ [|1, 𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠|] 

(10) 

Where 𝑷𝑗 is a 6 × 3 matrix: 

𝑷𝑗 = ( 𝑻3𝑗−2 
3𝑗 𝒂 

3𝑗−2
3𝑗−2 𝑻3𝑗−1 

3𝑗 𝒂 
3𝑗−1

3𝑗−1 𝒂 
3𝑗

3𝑗) 

 

In using this method with the last test case the CPU time was reduced of around 60%. This result is 

logical because the number of bodies was divided by three. 

 

4 Lowering or lifting a payload 
 

In the last section, the unstretched length of each cable element was kept constant during the 

simulation. In case of lowering or lifting a payload, the length of the cable becomes variable. This 

effect has to be incorporated. Following [16] and [17], a method to do so is to modify the unstretched 

length of the first cable element: 

 𝐿𝑢1
𝑡 = 𝐿𝑢1

𝑡−𝑑𝑡 + 𝑣. 𝑑𝑡  (11) 

Where  𝐿𝑢1
𝑡  is the unstretched length of the first cable element at time 𝑡, 𝑣 is the constant lowering 

velocity, positive for a lowering operation, negative for a lifting operation and 𝑑𝑡 is the time step. 

 

This has an impact on the internal loads of the first cable element: 

 

 Γ3 =

{
 
 

 
 −

𝐸𝐴

𝐿𝑢1
𝑡 (𝑞3 + 𝐿𝑢1

𝑡) −
𝐶𝐴

𝐿𝑢1
𝑡 (𝑞̇3 + 𝑣), |𝑞3| ≥ 𝐿𝑢1

𝑡

−
𝐶𝐴

𝐿𝑢1
𝑡 (𝑞̇3 + 𝑣), |𝑞3| < 𝐿𝑢1

𝑡

 (12) 

 

During an operation of lowering, respectively lifting, when the length of the first element is too long, 

respectively too short, this first element is divided into two new elements, respectively the first 

element is merged with the second one. That involves adding, respectively deleting, one element in the 

cable. The criterion on the length of the first cable element is: 

 

 𝐿𝑢1 = 𝛼. 𝐿𝑢  (13) 

 

A value of 1.5 is chosen for 𝛼 in case of lowering operations, 0.5 for the lifting operations. 
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5 Weak-scatterer theory and coupling with the multibody 

theory 
 

In case of a lowering or lifting operation, a payload goes through the free surface. Thus the submerged 

part of the payload is deeply modified and some unsteady effects due to the hydrodynamic interaction 

between the ship and the payload appear. These phenomena prevent the use of a classical 1
st
 order 

linear potential flow solver, this method being limited to the hypothesis of small amplitude motions. 

Regarding the second order linear potential flow approximation, the second order terms are taken into 

account but the free surface boundary equations stay written on 𝑧 = 0. The small amplitude motion 

hypothesis has still to be valid.  

Letournel [18] has developed a potential flow solver based on the weak-scatterer hypothesis for 

submerged bodies. Doing so, the velocity potential and the free surface elevation are splitted into two 

parts the incident and the scattered (perturbation) components: 

 
𝜙 = 𝜙𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 + 𝜙𝑝𝑒𝑟𝑡𝑢𝑏𝑎𝑡𝑖𝑜𝑛 

𝜂 = 𝜂𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 + 𝜂𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛  
(14) 

 

The weak-scatterer hypothesis assumes the perturbation part is small compared to the incident one. 

 
𝜙𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 ≪ 𝜙𝑝𝑒𝑟𝑡𝑢𝑏𝑎𝑡𝑖𝑜𝑛 

𝜂𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 ≪ 𝜂𝑝𝑒𝑟𝑡𝑢𝑏𝑎𝑡𝑖𝑜𝑛 
(15) 

 

The free surface boundary conditions are linearized on the incident wave elevation. There is no 

condition on the amplitude of the motion of the floater, while the body condition is written on its exact 

position (Body exact approximation). This numerical tool has been extended to piercing bodies by 

Chauvigné [19]. 

Dividing 

Figure 3: Sketch of the addition of a new cable element 
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As explained in [18] and [19], in case of a free body motion, the time-differentiation of the velocity 

potential is unknown. This quantity is computed from a second boundary value problem (BVP) in 

using the implicit condition method. The second BVP is constituted of three equations: 

 The integral equation (Laplace equation on the velocity potential); 

 The body condition (slip condition on the surface of the body); 

 The motion equation. 

 

To simulate a marine operation, the mechanical solver and the hydrodynamic solver has to be coupled. 

Different coupling strategies are available. Jonkman [20] and Yvin [21] listed the important families 

of coupling strategies.  

 

Figure 4: Different coupling methods 

 

Monolithic approach is present when the code is made of one piece, with only one single equation 

representing the system, one time integrator and one spatial mesh. Otherwise, when the system can be 

decomposed into several subsystems with input-output relationship, it is a partitioned approach. A 

tight coupling is obtained when only one equation of motion represents all the subsystems (coupling 

equation). A loose coupling is present when each subprogram has its own time-stepper. 

The mechanical solver and the hydrodynamic solver presented above are independent so a monolithic 

approach cannot be chosen. Contrary to a loose coupling, with a tight coupling, all quantities are time-

stepped synchronously. This fact ensures the robustness and the accuracy of the coupling strategy and 

therefore larger time steps can be used. Thus a tight coupling is selected. 

 

Figure 5: Tight partitioned approach for the coupling of the weak-scatterer code with InWave 
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In coupling the weak scatterer code with the multibody solver (represented by the equation (1)), 

modifications appear on both the body condition and the motion equation of the second BVP. The 

coupling equation will be exposed in case of a single floater considered as the base of the multibody 

system. 

 

The hydrodynamic force 𝑭 
𝑒

0
𝑊𝑆𝐶  in the inertial frame is obtained by discretization of the Bernoulli 

equation: 

 𝑭 
𝑒

0
𝑊𝑆𝐶 = 𝑪𝑻0 

𝑒 𝝓𝑡(𝐵0) + 𝑻0
ℎ

 
𝑒   (16) 

Where 𝝓𝑡(𝐵0) is the time-differentiation of the velocity potential on the body surface, 𝑪𝑻0 
𝑒  and 𝑻0

ℎ
 
𝑒  

represent the other discretized terms of the Bernoulli equation. 

In the multibody motion equation is written in the frame of each body, consequently equation (16) has 

to be written in the frame of the base. 

 𝑭 
0

0
𝑊𝑆𝐶 = (

𝑹𝑒 
0 𝟎𝟑×𝟑
𝟎𝟑×𝟑 𝑹𝑒 

0 ) 𝑭 
𝑒

𝑗
𝑊𝑆𝐶 (17) 

Where 𝑹𝑒 
0  is the rotation matrix between the inertial frame and the base frame. 

Finally the Newton’s second law for the multibody system is: 

 

 (
𝟎𝟔×𝟏
𝜞
) = (

𝑯𝟏𝟏 𝑯𝟏𝟐
𝑯𝟐𝟏 𝑯𝟐𝟐

) (
𝑽̇0 
0

𝐪̈
) + (

𝑪𝟏
𝑪𝟐
) − (

𝑭 
0

0
𝑊𝑆𝐶

𝟎𝒏𝑱𝒐𝒊𝒏𝒕𝒔×𝟏
) (18) 

The body condition is: 

 𝝓𝑡𝑛(𝐵0) = 𝑪𝑲0. 𝜼̈0 + 𝑸0
′   (19) 

Where 𝝓𝑡𝑛(𝐵0) is the normal derivative of 𝝓𝑡(𝐵0), 𝜼̈0 is the acceleration of the base in the inertial 

frame, 𝑪𝑲0 and 𝑸0
′  are the discretized terms of the body condition. 

 

According to the equation (1), it is necessary to express 𝜼̈0 in function of 𝑽̇0 
0 . As explained in [7] 

there is: 

 𝜼̇0 = 𝑱0 
𝑒 𝝂  (20) 

With 𝑱0 
𝑒  the transformation matrix between 𝜼̇0 and 𝝂. 

So the time-differentiation of this relation becomes: 

 𝜼̈0 = 𝑱0 
𝑒 ̇ 𝝂 + 𝑱0 

𝑒 𝝂̇  (21) 

From [5] there is also: 

 𝝂̇ = 𝑽̇0 
0 − (

𝑆( 𝝎0) 
0 𝒗0 

0

𝟎𝟑×𝟏
)  (22) 

Where S is the vector product matrix such as 𝑆(𝒖)𝒗 = 𝒖 × 𝒗, 𝝎0 
0  and 𝒗0 

0  are the angular and linear 

velocities of the body in the frame of the body. 

 

Hence: 

 𝝓𝑡𝑛(𝐵0) = 𝑪𝑲0. 𝑱0 
𝑒 𝑽̇0 

0 + 𝑪𝑲0. [ 𝑱0 
𝑒 ̇ 𝜈 − 𝑱0 

𝑒 (
𝑆( 𝝎0) 

0 𝑣0 
0

𝟎𝟑×𝟏
)] + 𝑸0

′   (23) 

 

The integral equation is unchanged: 

 𝑪𝑺(: , 𝐹𝑆). 𝝓𝑡𝑛(𝐹𝑆) − 𝑪𝑫(: , 𝐵0)𝝓𝑡(𝐵0) − 𝑪𝑫(: , 𝐸𝑥𝑡)𝝓𝑡(𝐸𝑥𝑡) + 𝑪𝑺(: , 𝐵0)𝝓𝑡(𝐵0) = 𝑪𝑫(: , 𝐹𝑆)𝝓𝑡(𝐹𝑆) − 𝑪𝑺(: , 𝐸𝑥𝑡)𝝓𝑡𝑛(𝐸𝑥𝑡) (24) 

 

Where 𝐶𝑆 and 𝐶𝐷 are the matrices of the influence coefficients. 𝐹𝑆, 𝐵0 and 𝐸𝑥𝑡 represents the part of 

the influence coefficient or 𝝓𝑡 or 𝝓𝑡𝑛 dedicated to the free surface, the floater and the tank. 
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The final system or coupling equation is 𝑨𝑿 = 𝑩 with: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With 𝑁 the total number of nodes in the mesh, 𝑁𝑒𝑥𝑡 the number of nodes for the tank and 𝑁𝐹𝑆 the 

number of nodes for the free surface. 

 

This coupling equation would stay the same in case of a fully non-linear potential flow solver. 

 

6 Numerical results 

 

6.1 Coupling verification on a WEC test case 
 

This coupling is applied to simulate the motion of a wave energy converter (WEC) of type CETO. It is 

a sphere of radius 3.5 m, the position of the center of gravity is 7 m below the free surface and the 

water depth is 20 m. The mass of the sphere is its displacement. The power take-off is made of a 

spring-damper system. The stiffness of the spring is 302478.6 N.m
-1

, the unstretched length is 13 m 

and the damping coefficient is 50 000 kg.s
-1

. The sphere can only move in heave. The incident wave is 

a regular wave of amplitude 1.25 m and wave frequency 1.0 rad.s
-1

. 

 

Figure 6: Sketch of a CETO system 
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Figure 7: Mesh of the tank, the free surface and the sphere. 

 

 

Figure 8: Comparison of the heave motion for the WSC code and the coupling InWave-WSC 

 

The figure 9 shows the responses of the coupling, between InWave and the weak-scatterer, and the 

weak-scatterer code only are the same. 
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6.2 Academic test case: a floater, a cable and a payload 
 

This coupling is now applied on an academic test case with a floater, a cable and a payload. A floating 

cylinder of radius 0.2 m and length 1 m only moves in surge and is linked to the center of the tank by a 

spring of stiffness 1990 N.m
-1

. The mass of the cylinder is 64.4 kg. A crane is fixed to this floater 

with, at the other extremity, a cable made of 3 elements. The Young modulus is 77.5e6 Pa, the 

damping coefficient is 100 Pa.s, the cable linear density is 2 kg.m
-1

, and the unstretched length of each 

element is 0.5 m. At the extremity of the cable free to move, an extra mass of 5 kg is added (payload). 

Thus the total mass of the system is 74.5 kg. At t = 0 s the cable is vertical at the equilibrium. This 

equilibrium was obtained in using the multibody solver presented in 3. 

 

Element Size (m) 

1 (crane) 0.50073 

2 0.50058 

3 (payload) 0.50044 

Table 2: Size of each cable element at t = 0 s 

  

A regular wave of amplitude 0.05 m and wave frequency 3.14 rad.s
-1

 is generated. 

 

  

Figure 9: Mesh of the tank, the free surface, the floater and the cable 
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Figure 10: Surge motion of the cylinder 

 

 

 

Figure 11: Rotation of the first cable element with respect to the crane (top) and length of the third element 
(bottom) 
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Figure 12: Mesh at t = 20.64 s 

 

Thus, the hydrodynamic loads on the floater are propagated from the cylinder to the cable and the 

payload and generate their motion. In return, the presence of the cable and the payload modifies the 

motion of the cylinder. 

 

 

Figure 13: Motion of the cylinder only (red) and the cylinder + the cable + the payload (blue) 
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On the figure 13, the surge motion of the whole system (cylinder, cable and the payload) is plotted 

with the motion of the cylinder only with the same total mass (74.5 kg). Thus the presence of the cable 

and the payload decreases the amplitude of the motion of the cylinder. The frequency of the response 

stays the same in the both cases. 

 

7 Conclusion 
 

In this paper, a new approach for the numerical simulation of the lifting and lowering operations was 

presented. It is based on the development and the adaptation of the Composite Rigid Body Algorithm 

for the mechanical solver and on a potential flow hypothesis with a weak-scatterer approximation for 

the hydrodynamic solver. The cable is simulated with the multibody solver. Attention is paid to the 

cable formalism to reduce the number of iterations and thus computation time. Finally the two solvers 

are coupled with a tight coupling strategy. A test case with a CETO wave energy converter has proved 

the validity of the coupling equation presented. An academic test case of a marine operation with a 

floater, a cable and a payload has been done. 

This coupling needs to be deeply validated and extended to the cases where the floater is not at the 

root of the multibody system and when there are several floaters. The interest of the weak-scatterer 

approach has to be quantified in comparison to the numerical tools using a classical linear potential 

flow solver. 
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