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Résumé :
Nous proposons une approche originale pour l’étude numérique des fluctuations extrêmes de trainée sur
un obstacle immergé dans un écoulement turbulent. L’approche se base sur un algorithme d’événements
rares couplé à la simulation numérique directe de l’écoulement. L’algorithme suit l’évolution d’une po-
pulation de simulations indépendantes et les duplique/supprime périodiquement de manière à favoriser
les fluctuations extrêmes de la trainée moyennée sur un temps donné. Nous appliquons cet algorithme à
un écoulement simple et calculons la statistique et la dynamique correspondant à des fluctuations rares
avec un coût numérique grandement réduit comparé à celui requis par une longue simulation numérique
directe.

Abstract :

We propose a novel way to conduct the numerical study of extreme drag fluctuations over an obstacle
immersed in a turbulent flow. It is based on a rare event sampling algorithm and direct numerical si-
mulation of the flow. The algorithm tracks the evolution of an ensemble of independent simulations and
periodically duplicate/discard some of them to favour trajectories related to extreme fluctuations of the
average drag over a given duration. We apply this algorithm to a simple flow and compute statistics and
dynamics of rare fluctuations with a greatly reduced computational cost compared to direct sampling
from one long direct numerical simulation.

Keywords : Turbulence, Drag fluctuations, Rare events, Importance Sam-
pling, Large deviations

1 Introduction
A striking property of turbulent flows is the sporadic occurrence of extremely intense fluctuations

in pressure or velocity fields, and forces on objects. Such fluctuations can induce extreme mechanical
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efforts on immersed obstacles such as drag, lift or torque. Statistics and dynamics of fluctuating mecha-
nical efforts are of relevant interest in mechanical engineering, where the modelling, understanding and
predictability of aerodynamics around bluff bodies are of crucial matter. Examples include the study of
drag and lift fluctuations affecting road vehicles [14, 2], estimation of wind loads on structures such as
tall buildings and bridges [11] and the effect of the intermittent nature of the atmospheric boundary layer
on wind energy production [10, 18, 8].

These issues are traditionally investigated through experiments that can be time-consuming, costly
and hard to carry out with precision, especially if a small scale model cannot be built. An alternative
is computational modelling based on a suitable mathematical model. Unfortunately, long range spatio-
temporal correlations responsible for the rare occurrence of large fluctuations are very difficult to capture
numerically. For the sake of simplicity, statistics of such events are often considered to be Gaussian, lea-
ding to a major underestimation of the impact of repetitive occurrence of rare fluctuations. The best
practice would be to simulate the flow from first principles (the Navier-Stokes equations). This approach
is referred to as Direct Numerical Simulation (DNS). However, the tremendous computational cost as-
sociated with the DNS of turbulence makes it unpractical for the study of rare events that would require
to simulate the flow over a very long time.

In this paper we propose a novel way to perform computational studies of rare fluctuations in turbulent
flows, bypassing the requirement of very long DNS. The problem of computing the statistics and dyna-
mics associated to rare events has been extensively studied in statistical mechanics. A key theoretical
tool is Large Deviation Theory which deals with rates at which probabilities of rare fluctuations decay
as a function of a given parameter [17]. Recently, significant efforts have been made to design numerical
methods to compute rare events in different fields of research. They have been applied for instance to
investigate changes of configurations in magnetic systems in situations of first order transitions [5, 7],
chemical reactions [3], conformal changes of polymer and bio-molecules [13, 9, 1, 19]. The objective
of our work is to assess the practicality of such algorithms to compute rare events in realistic complex
systems involving a large number of degrees of freedom, such as turbulent flows.

We compute extreme fluctuations for the time averaged drag

FT (t) =
1

T

∫ t+T

t
f(t′)dt′

where f is the instantaneous drag force acting on an obstacle immersed in a flow. In this paper, we
mostly focus on the drag averaged over a duration T much bigger than the correlation time of typical
fluctuations, for reasons that will be made clear in section 2. To establish a proof of concept, we test the
approach on a simple flow. In section 2, we briefly present the aforementioned algorithm and describe
its relation with Large Deviation Theory. Next, section 3 introduces the computational setup on which
our numerical experiments were carried out and gives the essence of the computational method we used
to simulate the flow, namely the Lattice Boltzmann Method. Eventually, section 4 illustrates the validity
of the method and its efficiency, as well as the results for the generation of extreme drag fluctuations.
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X

Figure 1 – Let X be a realisation of a process following the probability density ρ. We address the
problem of computing the probability P(X ∈ A) thatX falls into the region A. Direct sampling of the
distribution ρwould require a huge number of realisations to yield a reliable estimate ofP(X ∈ A) since
the latter is very small. Importance Sampling is a technique that consists in sampling another distribution
ρ̃(X) = L(X)ρ(X) where L is chosen so that typical realisations of the process following ρ̃ fall intoA.

2 Importance Sampling
We address the problem of studying the probability density function of the average drag

P
(

1

T

∫ t+T

t
f(t′)dt′ = a

)
(1)

and the dynamics leading to the related events. Direct sampling of this probability density function can
be achieved by performing an ensemble of simulations of the flow. This yields an ensemble of trajectories
distributed according to the trajectory probability measure P (0) ({X(t)}0<t<T = {x(t)}0<t<T ), where
a trajectory refers to a dynamical solution of the numerical model with X(t) a vector that contains
information about all the degrees of freedom of the model at time t. However, direct sampling proves
very inefficient since it would require simulation of the flow over very long times, entailing tremendous
computational effort.

2.1 Importance sampling at the level of trajectories
In order to sample the tails of the distribution (1) efficiently, we turn instead to importance sampling.

Importance sampling is a general technique for drawing realisations from a distribution, focusing on
a specific (important) region. Figure 1 illustrates the idea of importance sampling applied to the sam-
pling of the tails of a specified distribution of probability. Instead of generating trajectories according to
P (0) ({X(t)}0<t<T = {x(t)}0<t<T ), we generate an ensemble of trajectories according to a modified
probability Pk ({X(t)}0<t<T = {x(t)}0<t<T )

Pk ({X(t)}0<t<T = {x(t)}0<t<T ) =
exp

(
k
∫ T

0 fj [x(t)]dt
)

〈
exp

(
k
∫ T

0 fj [x(t)]dt
)〉P (0) ({X(t)}0<t<T = {x(t)}0<t<T )

(2)
where 〈.〉 indicates averaging over the density P (0) ({X(t)}0<t<T = {x(t)}0<t<T ). This way, trajecto-
ries are assigned a weight that is proportional to the corresponding value of

∫ T
0 f [x(t)]dt. Generating
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trajectories sampled according to Pk ({X(t)}0<t<T = {x(t)}0<t<T ) thus favours the occurrence of tra-
jectories with extreme values of

∫ T
0 f [x(t)]dt.

This is done by simulating an ensemble of Nc copies of the flow, each of them starting from inde-
pendent initial conditions. Each copy (labelled by an index j) is then simulated from t = 0 to an arbitrary
time t = τ . Next, each copy is replicated or discarded so that, in average, it gives birth to nj clones with

nj =
exp

(
k
∫ τ

0 fj [x(t)]dt
)

1
N

∑N
l=1 exp

(
k
∫ τ

0 fl[x(t)]dt
) (3)

This yields an ensemble of trajectories distributed according to the distribution

P (1) ({X(t)}0<t<τ = {x(t)}0<t<τ ) =
exp

(
k
∫ τ

0 fj [x(t)]dt
)

1
N

∑N
j=1 exp

(
k
∫ τ

0 fj [x(t)]dt
)P (0) ({X(t)}0<t<τ = {x(t)}0<t<τ )

Besides, when Nc is large we have, up to fluctuations of order
√
Nc

1

N

N∑
j=1

exp

(
k

∫ τ

0
fj [x(t)]dt

)
≈
〈

exp

(
k

∫ τ

0
fj [x(t)]dt

)〉
(4)

The clones then evolve from τ to 2τ and the cloning step is repeated, yielding an ensemble of trajectories
distributed according to P (2) ({X(t)}0<t<2τ = {x(t)}0<t<2τ ). Eventually , after N = T

τ iterations of
the evolution/selection process, one obtains a ensemble of trajectories distributed according to the tilted
probability (2). See [12] for a more detailed discussion of the algorithm.

2.2 Drag averaged over a long time and large deviation results
We now elaborate on the special case where the drag is averaged over a duration much longer than

the typical timescale of the turbulent fluctuations. In this case, one can show that

1

T
ln P

(
1

T

∫ t+T

t
f(t′)dt′ = a

)
−→
T→∞

I(a) (5)

We say that the distribution satisfies a large deviation principle. The limit T → ∞ is to be understood
as T >> τc, where τc is the timescale of the the turbulent fluctuations. The function I(a) is called the
rate function and encodes the statistics of the averaged drag, from common fluctuations to the far tails of
the distribution. The large deviation principle can be seen as an extension of the Central Limit Theorem,
as it describes the Gaussian fluctuations of order 1/

√
T , but also the tails of the distribution and the

corresponding rate of decrease. At this point it is useful to define the Scaled Cumulant Generating
Function (SCGF)

λ(k) = lim
T→∞

λ(k, T ) with λ(k, T ) =
1

T
ln

〈
exp

(
k

∫ Ta

0
fj [x(t)]dt

)〉
The scgf is directly linked to the rate function : I(a) = kaa− λ(ka) with λ′(ka) = 0.

The rate function can be computed by the algorithm. Its main output is the value of the scgf for the
value of k prescribed to weight the trajectories (see equations (2) and (3)). This can be seen by taking
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the long time limit in (2) :

Pk ({X(t)}0<t<T = {x(t)}0<t<T ) =
exp

(
k
∫ T

0 fj [x(t)]dt
)

eTλ(k)
P (0) ({X(t)}0<t<T = {x(t)}0<t<T )

Eventually, using (4), λ(k) can be connected to the averaged drag over each evolution process

eTλ(k) ≈ 1

N

N∑
j=1

exp

(
k

∫ τ

0
fj [x(t)]dt

)
× 1

N

N∑
j=1

exp

(
k

∫ 2τ

τ
fj [x(t)]dt

)
× ... (6)

In the next, we focus on the long-time averaged drag on an obstacle in flow. The correct computation
of the scgf will serve as a validation for the algorithm.

3 Numerical setup

Figure 2 – Sketch of the (two-dimensional) computational domain. Periodic boundary conditions at
the inlet/outlet are implemented and therefore the flow in the computational domain corresponds to the
flow in an infinite pipe, containing an infinite chain of obstacles. The flow is driven by a uniform body
force aligned with the axis of the pipe. We use Ny = 129 grid points in the cross-flow direction and
Nx = 385 grid points in the flow direction. The Reynolds number is Re = U0R

ν = 700 with U0 the
mean flow velocity in stationary regime.

We focus on the two-dimensional flow around two equally spaced squares cylinders in a pipe, as shown
in figure 3. The flow is simulated using the Lattice Boltzmann Method.

The Lattice BoltzmannMethod (hereafter mentioned as LBmethod) offers a computationally efficient
particle-based alternative to conventional continuum-based approaches to simulate fluid dynamics [16].
The fluid is considered at a kinetic level intermediate between the microscopic and the macroscopic.
More precisely, the fluid is viewed as populations of particles that collide, redistribute and propagate
along the different links of a discrete lattice. The complexity of the flow emerges from the repeated
application of simple rules of collision and streaming of these populations at each lattice node. The
flow variables such as velocity and pressure are obtained by averaging locally over the populations of
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Figure 3 – Discrete directions linking the lattice nodes, along which particles can move.

particles moving in the different directions (Fig. 3). This obviously refers to a kinetic description of fluid
dynamics and rigorous connections can be established with the Boltzmann equation (under the so-called
BGK approximation) [4].

Formally, the LB scheme reads (under the BGK approximation for the collision kernel) as

fi(x + ci∆t, t+ ∆t) = fi(x, t)−
1

τ
[fi(x, t)− feqi (x, t)] + ∆tFi for i = 0, ...8 (7)

(8)

where fi(x, t) represent the amount of mass (per unit volume) carried by the particles moving (with
speed ci) in the its-direction at position x and time t. The term Fi [6] allows us to account for the
presence of a body force, namelyQ, that is

Fi =

(
1− 1

2τ

)
wi

[
ci − u

c2
s

+
ci · u
c2
s

ci

]
·Q. (9)

The macroscopic quantities are recovered locally by summing the contributions

ρ =
∑
i

fi (10)

ρu =
∑
i

fici +
1

2
Q∆t (11)

(12)

The pressure is intrinsically given by P = c2
sρ in a weak-compressibility approximation, where cs may

be interpreted as the speed of sound. The relaxation parameter τ is related to the kinematic viscosity of
the fluid : τ = 1/2 + ν/∆tc2

s.

The instantaneous drag is computed at each time-step by integrating the strain rate tensor on the
surface of the obstacle and projecting along the direction of the flow. Figure 4 shows snapshots of the
velocity and vorticity fields, respectively.

4 Computation of statistics for rare drag fluctuations
We finally present and discuss the application of the importance sampling method described in sec-

tion 2 to the study of extreme drag fluctuations. We use the numerical setup introduced in the previous
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Figure 4 – Typical realisation of velocity and vorticity fields. Top : Velocity field. Bottom : Vorticity
field

section and focus on the averaged drag on one of the square obstacles.

Applying the importance sampling algorithm presented in section 2 with deterministic dynamics, one
must add some randomness in the evolution of the clones for them to separate during the evolution
process. In this work, we simply perturb the initial state of new clones and let the chaoticity of the flow
separate the trajectories.

4.1 Validation of the method and quantification of its efficiency
In order to validate the proposed approach we first compute an estimate of the scgf from a long direct

numerical simulation of the flow, referred to a the control run. This estimate will serve as a benchmark.
Then, for a lower computational cost, we compare the result from the importance sampling on the one
hand, and direct numerical simulation on the other hand. We express computational costs in terms of
turn-over time. The turn-over time is the typical timescale of advection by the mean-flow.

We perform a control run with a costClong = 2.3×106 turn-over times and compute a direct estimate
of the scgf. The latter is obtained by dividing the time series in blocks of length ∆T , with ∆T much
longer than the typical correlation time of the instantaneous drag fluctuations, so that the large deviation
regime (5) is reached. We can then compute an estimator of the scgf.

λ̂(k) =
1

T
ln

1

M

M∑
m=1

exp

(
k

∫ (m+1)∆T

m∆T
f(t)

)
, M =

T

∆T

Due to the finite size of the time series, the estimator λ̂ can only be trusted between two threshold values
kmin and kmax, past which convergence of the estimator cannot be established.We redirect the interested
reader to [15]. In the next, we will only focus on positive values of k, i.e. positive fluctuations of the
average drag.
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We then perform simulations using the importance sampling algorithm with a cost Cshort << Clong.
The cost of a run of the importance sampling algorithm corresponds to Nc × Ta, that is the number
of clones times the total time over which each clone is simulated. Lastly, a direct estimation with the
same cost Cshort is carried out. The results obtained from the validation protocol are shown in figure 5.
Figure 5 illustrates that a good estimation of the scgf is achieved at a much lower computational cost
Cshort, whereas direct numerical simulation for cost Cshort is restricted to lower values of k, that is
events closer to typical fluctuations.
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Figure 5 – Scaled Cumulant Generating Function obtained from three different methods. The thick blue
line represents the estimate computed from a long direct numerical simulation with a computational
cost Clong = 2.3×106 turn-over times. Black dots correspond to the output of the importance sampling
algorithm with 128 replica, simulated over 400 turn-over times leading to a total cost ofCshort = 5.12×
104 turn-over times. The cloning period is τ = 0.5 turn-over times. Finally, the thick red line represents
the estimate obtained from a direct numerical simulation with cost Cshort. Dashed red lines and thin
blue lines mark out the confidence region for both estimations. The blue estimate can only be trusted up
to k ≈ 0.16, after which the convergence of the estimator cannot be easily established and errors cannot
be quantified. This figure illustrates that the algorithm is able to compute the value of the scgf up to
such values of k at a much lower computational cost.

The upper bound of the control run is reached for k = 0.15. For trajectories of length Ta = 400 turn-
over times, this corresponds to fluctuations of 1

Ta

∫ t+Ta
t f(t′)dt′ being more than 2 standard deviations

σ away from the average value.

4.2 Discussion of the algorithm efficiency
To sum up, our experiment shows that for fluctuations beingmore than 2σ away than the average value,

the SCGF is computed for 3% of the computational effort required by a direct estimation. We stress here
that the cost of the importance sampling algorithm does not depend much on k, that is the on the rarity
of the typically sampled events. In comparison, the cost of a direct estimation grows like the inverse of
the probability of the corresponding rare events, and thus the algorithm efficiency is expected to increase
like the inverse of the probability of the events. In practice however, the improvement is slightly slower
than the inverse of the probability of the events. The rarer the events (the higher |k|), the more stringent
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is the selection imposed by the algorithm. As a consequence, one has to increase the number of clones
or/and reduce the cloning time. Reducing the cloning time does not a priori impact the computational
cost of the method. However, this is true only if one can neglect the cost of the cloning step compared
to the evolution step and low cloning times can significantly increase the computational effort required
to run the algorithm.

4.3 Reconstruction of dynamics related to extreme fluctuations
Asmentioned in section 2, the selection imposed by the algorithm results in an ensemble of trajectories

distributed according to a modified probability (2). From the final state of the ensemble of copies, the
trajectories are reconstructed by tracing back in time the evolution of the replica, following the evolution
of the ancestors of every clone. It is then possible to compute the average drag over these trajectories
and verify that the distribution of these values is shifted towards extreme fluctuations. Figure 6 shows
the ensemble of values for the average drag obtained with the algorithm after reconstructing trajectories.
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Figure 6 – In blue, the values of the average drag over the trajectories generated by the importance
sampling algorithm. The thick black line represents the original distribution, evaluated from a direct
simulation of the flow over 2 × 105 turn-over times. In both cases, the algorithm was used with 128
replica, with a cloning period of 0.5 turn-over times. Left : time-averaged drag over 400 turn-over times
obtained with the algorithm with k = 0.15. In this case the large deviations regime is attained and the
generated fluctuations are close to λ′(k) ≈ 0.1. Right : time-averaged drag over 20 turn-over times
obtained with the algorithm with k = 0.3. Even if the large deviations regime is not attained in this
case, the algorithm still generates trajectories related to rare fluctuations. However the typical value of
these fluctuations cannot be directly linked to the value of k.

The previous results were obtained in the limit where the drag is averaged over a time much longer
than the timescale of typical drag fluctuations, so that the large deviations principle (5) can be establi-
shed. If this is so, the algorithm gives access to an estimate of the scgf and there is a direct connection
between the value of the bias k and the typical values of the fluctuations related to the generated tra-
jectories. Nevertheless, equation (2) remains valid for shorter trajectories, with this difference that the
normalisation factor in (2) cannot be linked to the scgf in that case. Figure 6 illustrates that the algorithm
generates trajectories related to rare fluctuations of the time-averaged drag even if the large deviation
regime is not attained.

5 Perspectives
The application of importance sampling described in section 2 to the simple test flow presented in

section 3 indicates that such rare event sampling algorithms are relevant for computing rare events in
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turbulent flows. We computed the statistics for the extreme fluctuations of the time-averaged drag on the
obstacle with only a fraction of the cost required for an estimation with a direct numerical simulation.
Furthermore, we simulated the dynamics related to these extreme fluctuations.

Using the algorithm, we will conduct extensive study of the fluid mechanics aspects of the dynamics
leading to extreme drag fluctuations based on the generated trajectories. We also look towards complex
geometries and applications to industrial flows to simulate rare events of industrial interest. Finally, we
will use the algorithm to compute return times, indicating the average time one has to wait to witness a
given fluctuation. We expect it will be particularly useful for industrial applications.
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