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Résumé :
Les conditions opératoires des échangeurs à films ruisselants correspondent à l’intervalle 100 à 300
du nombre de Reynolds pour lequel le développement d’ondes de surface peut s’accompagner de la
présence de turbulence. Nous proposons dans cette étude de formuler des équations simplifiées sem-
blales aux équations de Saint-Venant et consistantes avec le développment “ondes longues” à l’aide de
la méthode aux résidus pondérés. Le modèle se présente sous la forme d’équations d’évolution pour
l’épaissseur h et le débit q. Chaque coefficient du modèle est fonction du nombre de Reynolds local
|q(x, t)|/ν. Les comparaisonsdes vitesses et des profils des ondes propagatives ’à rouleaux’ avec les
expériences de Brock [3] sont assez bonnes.

Abstract

We consider a wavy liquid film flow, which is partly laminar and partly turbulent. Such a situation may
occur for the large-amplitude solitary wave regime which develops at Reynolds numbers in the range
100 to 300, which corresponds precisely to the operational conditions of current chemical devices. We
propose to model the onset of turbulence by a simple eddy-viscosity formulation using the Van Driest
mixing length formula. A simplified two equation model is then derived within the framework of the
weighted residual method in terms of the local flow rate q(x, t) and the film thickness h(x, t). The model
is consistent with the asymptotic long-wave expansion, which guarantees that instability thresholds are
correctly captured, and accounts for surface tension and elongational viscosity. Each coefficient of
the model is a function of the local Reynolds number, |q(x, t)|/ν and has been tabulated numerically.
Preliminary comparisons to the experimental data by Brock [3] for roll waves in the full turbulent regime
prove to be satisfactory. In particular, the values of the coefficient of the Chezy law proposed to model
the wall shear stress using Brock’s experiments are recovered without adjusting parameters.

Mots clefs : falling films, instabilities, transition to turbulence, wall induced
turbulence

Introduction
The design of compact and efficient heat and mass exchangers is a key issue in chemical engineering
processes. It requires the intensification of heat and mass transfer at the local scale, which is generally
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obtained by increasing the contact area between the fluids and generating mixing. In the case of two-
phase flow processes, such as evaporators or absorbers, falling film plate exchanger are solutions of
interest whenever the pressure drop in the gas phase is a key issue, a situation that commonly arises
when low-temperature heat sources are involved, for instance in the design of recovery systems to limit
energy waste.

Usual operating conditions of falling-film plate exchangers correspond to Reynolds numbers lying in the
range 50 to 1000, inwhich case awavy regime characterized by large-amplitude longwaves in interaction
develops. These waves significantly increase the heat and mass transfer across the film by thinning the
film, which reduces the resistance to transfer, and by providing an efficient mixing mechanism via wave
merging. For these operating conditions, Ishiga et al. [5] noticed a transition from a laminar wavy state
to a wall-induced turbulent state. This transition occurs at far lower Reynolds numbers than what is
typically observed in pipe flows and significantly affects heat transfer across the film. As a consequence,
a reliable modelling of falling film flows in the typical conditions encountered in industrial applications
requires to account for the onset of wall-induced turbulence, which is probably localized under the crests
of the most prominent waves as suggested by the experiments of Adomeit and Renz [4] and the numerical
study of Dietze et al. [1].

In this paper, we outline the derivation of a consistent set of averaged equations across the film layer,
which accounts for the presence of wall-induced turbulence within the framework of a zero-equation
closure.

Formulation
We consider a falling liquid film on an inclined plane under the action of gravity. The flow is assumed
incompressible, Newtonian and to remain two-dimensional (spanwise invariant). The streamwise co-
ordinate is denoted by x, the cross-stream coordinate is y. The thermophysical properties, density ρ,
dynamic and kinematic viscosities, µ and ν = µ/ρ, and surface tension σ are constant. θ refers to the
inclination angle of the plane. We introduce different length scales for the coordinates in order to ac-
count for the long-wave nature of the instability of film flows. The pressure p, velocity field (u, v), film
thickness h and stresses τ are made dimensionless by introducing the typical length of the wave, L, the
typical thickness h0 and velocity scale 〈u0〉:
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where ε = h0/L� 1 is the film parameter. The governing equations thus read
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where the shear stresses are written with the Prandtl’s classical mixing length hypothesis

τ̃xy = [1 +Rel2(ȳ, h, q)γ̇]
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√

(∂yu+ ε2∂xv)2 + 4ε2(∂xu)2 . (2e)

This set of equations is completed by the boundary conditions. No slip at the wall y = 0 and kinematic
boundary condition at the free surface y = h

ṽ(ỹ = 0) = 0 , ũ(ỹ = 0) = 0 ,
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and the continuity of the stresses at the free surface assuming a passive atmosphere (constant pressure
and negligible shear stresses).
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Finally, the following set of dimensionless groups have been defined, namely the Reynolds number

Re =
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ν

, (3a)

the Froude number ,
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gh0

(3b)

and the Weber number .
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γ
(3c)

For convenience, we introduce the combinations

λ =
Re sin θ

F 2
, κ =

ε2F 2

We
. (3d)

and next assume dominant surface tension effects i.e. κ = O(1).

Let us underline that the proposedmodelling of the turbulence within the film is the crudest one, one may
think of. We simply consider the turbulence to be generated by the shear at the wall. We do not consider
the onset of turbulence at the free surface of the film that might occur due to wave breaking phenomenon.
We also oversimplify the distribution of turbulence within the film by considering it to be a function of
the sole distance to the wall and the wall shear stress. We thus assume the evolution of turbulence to be
sufficiently rapid to adjust to the deformation of the free surface (geometry) and local flow conditions
(hydrodynamics) induced by the wavy regime of the film. Therefore the development that is proposed
belowmust be considered as a first step forward to model the film hydrodynamics including both laminar
and turbulent regions.
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The long-wave assumption introduces an ordering in ε of all terms present in the basic set of equations,
which enables to drastically simplify the problem at hand by dropping out small terms in comparison to
the most prominent ones. Neglecting the terms of O(ε2) and higher we get from (2c),
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where the tilde have been omitted for convenience. Integration over depth using the boundary condition
(2h) next yields the expression of the pressure distribution
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Substitution in (2b) provides a truncated momentum balance which is similar to the Prandtl momentum
balance in boundary-layer theory
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with the condition at the free surface

τxy(h) = ε2
∂h

∂x
[τxx(h)− τyy(h)] +O(ε3) (6b)

Equations (6), completed with the continuity equation (2b), are consistent up toO(ε2) with the classical
long-wave expansion. They include surface tension effects and streamwise viscous terms, or elongational
viscosity effects, sometimes labelled Trouton viscosity in the context of free falling liquid films. In spite
of the adopted simplifications, to solve the system (6) and (2b) is still a formidable work as it still involves
to track a moving free surface and thus a deformable interface. In what follows, we aim at describing
the long-scale evolution of the film with a reduced set of unknowns which characterized the dynamics
across an infinitesimal column of liquid at a given location x on the substrate.

The dynamics of the film is thus parameterized with the local film thickness h and the local flow rate
q =

∫ h
0 dy, writing

u = ũ(0) + εũ(1) with ũ(0) =
q

h
f(ȳ) ,

∫ 1

0
fdȳ = 1 and

∫ h
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ũ(1)dy = 0 (7)

with ȳ = y/h the reduced cross-stream coordinate. The decomposition (7) implies that the correction
ũ(1) does not contribute to the flow rate q, thus the last condition in (7). To be consistent, the velocity
profile f must fulfill

d

dȳ

[(
1 + |q|Rel̄2f ′

)
f ′
]

= cst ≡ λf , f(0) = 0 , f ′(1) = 0 and l̄ = l/h . (8)

Integration of the continuity equation (2a) using the free-surface kinematic condition (2f) yields the
exact mass balance:

∂th+ ∂xq = 0 (9)



23ème Congrès Français de Mécanique Lille, 28 au 1er Septembre 2017

which is an evolution equation for the film thickness h. The weighted residual technique is invoked to
derive an evolution equation for the flow rate q. The idea is to average the momentum balance (6) with
an appropriate weight to retain consistency up to O(ε). Substitution of (7) into (6) yields
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ũ(1)|y=0 = 0 , ∂yũ
(1)|y=h = O(ε2) (10b)

Equation (10) retains correctly the leading order contribution of the principal physical effects: inertia,
gravity, surface tension, viscous drag and elongational viscosity. The loss of consistency at second
order (O(ε2)) corresponds to the neglect of the corrections to the inertia terms due to the deviations
ũ(1) from the flat-film base flow. The set of equations (10) is linear with respect to ũ(1) and can be
straightforwardly integrated to yield ũ(1), which would be a function of q, h and their derivatives. The
gauge condition

∫ h
0 ũ

(1)dy = 0 then provides the missing evolution equation for q, which combined with
the mass balance (9), gives a closed set of reduced equation, or model, which describes the evolution of
the film.

The weighted residual technique offers a useful shortcut to obtain the evolution equation for q through
a careful choice of the weight function. Writing formally (10a) as BL(ũ(1)) = 0, we introduce the
scalar product 〈·|·〉 =

∫ h
0 ·dy and write the residual R = 〈BL(ũ(1))|w〉 = 0. Similarly, writing
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whereL† is the adjoint operator toL. Two integration by parts suffice to show thatL = L† is self-adjoint.
The O(ε) contribution to the drag (11) can be cancelled out using the gauge condition 〈ũ(1)|1〉 = 0 by
demanding that w(ȳ) verifies
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dȳ

[(
1 + 2|q|Rel̄2f ′

)
w′
]

= cst ≡ λw ,
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wdȳ = 1 (12)

We emphasize that, due to the nonlinear (quadratic) nature of the strain-to-stress relation (2d) as implied
by the Prandtl’s mixing length hypothesis, the appropriate weightw is different from the base flow profile
f .
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The obtained residual takes the form of an evolution equation for q:
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Along with the mass balance (9), (13) forms a closed set of equations governing the evolution of the film,
which is formally similar to the classical shallow-water equations (see [6] and next section). Coefficients
are function of the local Reynolds number |q|Re only and have been tabulated numerically. Equation (13)
being consistent up toO(ε), the zeroeth order solution to the long-wave expansion, u(0) can be obtained
from ũ(0) where q = q(0) is given by solving β(q)q = (Re/Fr2)h3 sin θ.

Results and Validation
Validation of the model (9) and (13) has been conducted with respect to the experimental data by Brock
[3]. Brock reported the wave characteristics of roll waves, or periodical hydraulic jumps, that are com-
monly observed in the torrential regime of free-surface shallow-water hydraulic flows that develop over
moderately inclined planes, for inclination angles between 1◦ to 7◦, for Reynolds numbers in the range
4900 to 21000, which corresponds to Froude numbers between 2.63 and 5.90.

In these conditions, surface tension and elongational viscosity are insignificant apart from the hydraulic-
jump region that we do not intend to consider. Our averaged momentum equation thus reduces to
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q

h
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h[sin θ − ε cos θ∂xh] + β(q)

q

h2
= 0 , (14)

which shall be compared to the classical shallow-water momentum equation
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h[sin θ − ε cos θ∂xh] +ReCf

q|q|
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where the wall shear stress is modelled by the Chezy formula [7]. Comparison of the wall shear stresses
in (14) and (15) yields an estimate Cf ≈ β(1)/Re that agrees well with the measurements as shown in
figure 1.

We have used the AUTO07p software (http://cmvl.cs.concordia.ca/auto/) to compute
the traveling wave solutions to the systems (9), (13) and (9), (15). These solutions are periodical and
stationary in a frame of reference ξ = x− c tmoving at the phase speed c of the waves. They have been
obtained by adding a small diffusion term ∝ ∂x(h∂x(q/h)) to the momentum balances (13) and (15)
in order to compute the shock region of the waves. Figures 6 and 7 present the shapes of the computed
waves and compare their characteristics (minimum andmaximum heights) to Brock’s experimental data.
In all tested cases, our model yields a better agreement to the experimental data than the corresponding
computations with the classical shallow-water equations.
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Figure 1: Cf versus Re. The continuous line refers to Cf = β(1)/Re, whereas dots are deduced from
the measurements by Brock [3].
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Figure 2: λ = 146, θ = 6.84, Re = 6011
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Figure 3: λ = 264, θ = 1.11, Re = 20310
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Figure 4: λ = 112, θ = 2.87, Re = 7302
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Figure 5: λ = 125, θ = 4.83, Re = 4914

Figure 6: Wave profiles
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Figure 7: Maximum andminimum heights of the waves corresponding to the experimental data by Brock
[3].

Conclusion
We have developed a simplified model to capture the wavy regime of falling liquid films using the
weighted-residual technique. This model accounts for the onset of wall-induced turbulence within the
framework of the RANS equations with a zero-equation closure. By construction, the derived set of
equation is consistent with the long-wave expansion up toO(ε) for inertial terms andO(ε2) for diffusive
ones. Comparisons of the travelling-wave solutions to the with Brock’s experiments [3] are encouraging.
In particular, a better agreement is obtained for the travelling-wave characteristics than with the classical
shallow-water equations.
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