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Résumé :
Le but de ce travail est de proposer un modèle de type Gurson pour les matériaux poreux ductiles
avec écrouissage isotrope et cinématique. La dérivation est basée sur une “analyse limite séquentielle”
d’une sphère creuse constituée d’un matériau rigide écrouissable. L’hétérogénéité de l’écrouissage est
prise en compte en discrétisant la celulle élémentaire en un nombre fini de couches sphériques dans
lesquelles les quantités caractérisant l’écrouissage sont supposées homogènes. Le modèle est évalué
par comparaison de ses prédictions avec les résultats d’analyses micromécaniques par éléments finis
sur les mêmes cellules élémentaires. Les surfaces de charge numériques et théoriques sont notamment
comparées pour des distributions initiales de pré-écrouissage isotrope et cinématique. Les prédictions
du modèle sont en très bon accord avec les résultats des calculs numériques.

Abstract :

The aim of this work is to propose a Gurson-type model for ductile porous solids exhibiting isotropic
and kinematic hardening. The derivation is based on a “sequential limit-analysis” of a hollow sphere
made of a rigid-hardenable material. The heterogeneity of hardening is accounted for by discretizing the
cell into a finite number of spherical layers in each of which the quantities characterizing hardening are
considered as homogeneous. Themodel is assessed through comparison of its predictions with the results
of some micromechanical finite element simulations of the same cell. The numerical and theoretical
overall yield loci are compared for given distributions of isotropic and kinematic pre-hardening. A very
good agreement between model predictions and numerical results is found.
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1 Introduction
The failure of metals is one of the most challenging problems faced by the scientific and industrial com-
munities. In particular, a difficult but essential task consists in providing predictive micromechanically-
based models that permit to account for both monotonic and cyclic loadings.

In the case of ductile materials, failure essentially takes place in three steps [1] : (i) the nucleation of
voids, (ii) their growth, change of shape and rotation, and finally (iii) their coalescence leading to fi-
nal failure. The modelling of these mechanisms started with the pioneering work of Gurson [2] who
combined homogenization and limit-analysis of a hollow sphere made of a rigid-ideal-plastic isotropic
material to derive a model of ductile materials incorporating void growth. Followed by many extensions
[3–9] this approach has met considerable success in the reproduction of experimental tests of failure of
ductile materials under monotonic loading conditions.

The failure of ductile metals under cyclic loadings, however, is less well understood and mastered. Ex-
periments have shown that the strain to fracture is considerably lower, for a given load, if it is reached
under cyclic conditions rather than monotonically. This reduction of ductility is commonly attributed to
an effect of gradual increase of the mean porosity (volume fraction of voids) during each cycle termed
the ratcheting of the porosity. Devaux et al. [10] showed that Gurson’s classical model [2] does not pre-
dict the effect of ratcheting of the porosity under cyclic loadings, but a stabilization of the evolution of
the porosity right from the first semi-cycle. The explanation of this shortcoming of Gurson’s model lies
in the crude modelling of strain hardening within this model, and more specifically in the fact that the
same “average yield stress of the matrix” appears in both the “square” and the “cosh” terms of the yield
function. Only a few models have been proposed in order to account for the heterogeneity of hardening
only in the context of isotropic hardening [11, 12].

The importance of the effect of strain hardening upon ductile failure - and especially the ratcheting
of the porosity under cyclic loadings - acts as a strong incentive to develop models accounting better
for the heterogeneous distribution of hardening in the plastic matrix. In particular, the incorporation of
kinematic hardening appears to be necessary in order to deal with cyclic plasticity. The aim of this work
is to derive a Gurson-type model accounting for both isotropic and kinematic hardening.

2 A Gurson-type model accounting for isotropic and kinematic
hardening

2.1 Position of the problem
Geometry and material. In order to derive the overall constitutive law of the porous medium, we
consider, following [2], a spherical “elementary cell” Ω containing a concentric spherical void ω. The
porosity (void volume fraction) is defined by f = vol(ω)/vol(Ω) = a3/b3, where a is the void’s radius
and b the cell’s external radius.

The material is assumed to be rigid-plastic (no elasticity) and exhibit a mixed, isotropic and kinematic
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hardening ; it is thus supposed to obey the following criterion :

φ(σ(x)) = (σ(x)−α(x))2
eq − σ̄

2(x) ≤ 0, ∀x ∈ Ω− ω, (1)

where σ̄ is the current yield stress and (σ −α)2
eq is defined by

(σ −α)2
eq =

3

2
(σ′ −α) : (σ′ −α). (2)

In this expression, σ′ = σ− 1
3(trσ) I (where I is the second-order unit tensor) is the deviator of σ, and

α is a traceless backstress tensor due to kinematic hardening.

Sequential limit-analysis. Limit-analysis combinedwith Hill-Mandel homogenization is a convenient
framework to derive constitutive equations for porous ductile solids. It permits to effectively operate the
scale transition by evidencing the effects of microstructural features at the macroscopic scale.

Yang [13] heuristically extended the methods and results of classical limit-analysis by incorporating the
effects of strain hardening and geometric changes. The idea is, still disregarding elasticity, to consider a
hardenable material as the sequence of different, successive rigid-ideal plastic materials. At a given ins-
tant, a hardenable material without elasticity behaves, if the hardening and the geometry are considered
as fixed, like a rigid-ideal plastic material with some pre-hardeningmodifying its yield criterion and flow
rule. An instantaneous limit-load can thus be determined using the classical limit-analysis theorems. In
order to account for changes of the strain hardening and geometry, the local hardening parameters and
present positions are then updated approximately using the trial velocity field used in the limit-analysis,
integrated in a small time step.

Sequential limit-analysis can thus be used to derive a Gurson-type model incorporating both isotropic
and kinematic hardening. Hardening will be introduced locally in the criterion as a fixed pre-hardening,
and the resulting instantaneous loads promoting plastic flow of the cell will be evaluated.

2.2 Macroscopic plastic potential
To approximately calculate the macroscopic plastic potential, we consider [2]’s trial incompressible
velocity field. The macroscopic plastic potential is given by

Π(D) =
1

vol(Ω)

∫
Ω−ω

(σ̄deq + α : d) dΩ = Πiso(D) + Πkine(D), (3)

where the “isotropic” and ”kinematic” contributions Πiso(D) and Πkine(D) to Π(D) are given by
Πiso(D) =

1

vol(Ω)

∫
Ω−ω

σ̄deq dΩ

Πkine(D) =
1

vol(Ω)

∫
Ω−ω

α : d dΩ.

(4)

One necessary assumption to evaluate these integrals analytically will be that the local hardening pa-
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rameters are distributed in a certain, specific way within the matrix. The cell is thus considered to be
composed of a finite number N of phases distributed in concentric spheres of radii (see Figure 1)

a = r1 < ... < ri < ... < rN+1 = b. (5)

The phase contained within the interval [ri, ri+1] is denoted Pi.

a

b

ri

ri+1

Figure 1 – Hollow sphere : definition of some geometric parameters.

Isotropic potential. In order to calculate the potential Πiso(D), we introduce the following approxi-
mation on the spatial distribution of the yield limit σ̄ :

A1 : In each phase Pi, the yield limit σ̄ = σ̄i is considered as uniform.

The expression of the partial isotropic potential then becomes

Πiso(D) =

N∑
i=1

Πiso
i (D), (6)

where

Πiso
i (D) = σ̄i

∫ 1/fi

1/fi+1

√
D2

eq + 4D2
mu

2
du

u2

= σ̄i

−
√
D2

eq

u2
+ 4D2

m + 2Dm ln

(
2Dmu

Deq
+

√
1 +

4D2
mu

2

D2
eq

)u=1/fi

u=1/fi+1

. (7)

In this equation, the “local volume fraction” fi is given by

fi =
(ri
b

)3
. (8)

Kinematic potential. In order to calculate the kinematic part Πkine(D) of the potential, we introduce
the following approximation on the spatial distribution of the backstress α :

A2 : In phase Pi, the backstress α is of the form :

α = αi = Ai
1 +Ai2(−2er ⊗ er + eθ ⊗ eθ + eϕ ⊗ eϕ), (9)

where Ai
1 is a second-order traceless tensor and Ai2 a scalar, both uniform within Pi.
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The expression of the kinematic potential then becomes

Πkine(D) = A1 : D′ + 3A2Dm, (10)

where 
A1 =

N∑
i=1

Ai
1(fi+1 − fi)

A2 =
N∑
i=1

2Ai2 ln

(
fi+1

fi

)
.

(11)

2.3 Macroscopic yield criterion
The macroscopic yield criterion is given by the parametric equation

Σ =
∂(Πiso + Πkine)

∂D
(D) = Σiso + Σkine, (12)

where the “isotropic” and ”kinematic” contributions Σiso and Σkine to the stress Σ are defined by
Σiso =

∂Πiso

∂D
(D)

Σkine =
∂Πkine

∂D
(D).

(13)

Using the previous potentials, one obtains the macroscopic yield locus in the parametric form Σm −A2 = Σiso
m (ξ)

(Σ−A1)eq = Σiso
eq (ξ),

(14)

where Σiso
m and Σiso

eq are given by 
Σiso

m =
1

3

∂Πiso

∂Dm
=

N∑
i=1

Σiso
m,i

Σiso
eq =

∂Πiso

∂Deq
=

N∑
i=1

Σiso
eq,i

(15)

with 

Σiso
m,i =

2

3
σ̄i
[
ln
(

2ξu+
√

4ξ2u2 + 1
)]u=1/fi

u=1/fi+1

Σiso
eq,i = σ̄i

[
−
√

4ξ2 +
1

u2

]u=1/fi

u=1/fi+1

, ξ =
Dm

Deq
. (16)
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3 Assessment of the model

3.1 Description of the simulations
In order to study the macroscopic criterion, we consider all internal parameters (geometry and harde-
ning) as fixed. We thus solve the limit-analysis problem for a given, fixed pre-hardening (resulting from
some given prestraining), without any geometry update, using the finite element method (FEM).

Axisymmetric loadings are considered : Σ11 = Σ22 6= 0, Σ33 6= 0, and Σij = 0 otherwise. Two Lode
angles (denoted θL) are considered : θL = 0 corresponding to Σ33−Σ11 > 0 and θL = π corresponding
to Σ33 − Σ11 < 0. The simulations are performed by solving an elastic-plastic evolution problem, the
limit-load being considered as reached when the overall stress components no longer evolve [14].

3.2 Isotropic pre-hardening
We consider two cases with isotropic pre-hardening (and no kinematic pre-hardening : α = 0 everyw-
here in the matrix) :

— Case 1. Hardening is assumed to be more important near the cavity ; the yield stress is supposed
to vary linearly with r from the value σ̄(r = a) = 1.5 σ̄0 to the value σ̄(r = b) = 0.5 σ̄0.

— Case 2. Hardening is assumed to be more important near the cell’s boundary ; the yield stress is
supposed to vary linearly with r from the value σ̄(r = a) = 0.5 σ̄0 to the value σ̄(r = b) =

1.5 σ̄0.
Figure 2 compares the yield surfaces associated to the theoretical model with N = 10 phases, [2]’s
model without pre-hardening and the finite element results, for a porosity f = 0.01.
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Figure 2 – Yield surfaces for isotropic pre-hardening : theoretical model (Present model), Gurson’s
model (Gurson) and finite element results (FEM). (a) Case 1, (b) Case 2 (see text).

3.3 Kinematic pre-hardening
We now consider three cases with kinematic pre-hardening (and no isotropic pre-hardening : σ̄ = σ̄0 =

Cst. everywhere). In all cases the local backstress α is of the form

α = α1(r) + α2(r)(−2er ⊗ er + eθ ⊗ eθ + eϕ ⊗ eϕ), (17)
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where the traceless tensor α1(r) and the scalar α2(r) depend only on r.
— Case 1. Pre-hardening is assumed to affect the sole deviatoric stress ; the non-zero components

of α1 are : α1(11) = α1(22) = −α1(33)/2 = −σ̄0/6 and α2 is nil.
— Case 2. Pre-hardening is assumed to affect the sole hydrostatic stress ; α2 is supposed to vary

linearly from the value α2(r = a) = −σ̄0/6 to the value α2(r = b) = 0, and α1 is nil.
— Case 3. Pre-hardening is assumed to affect both the hydrostatic and deviatoric stresses ; the non-

zero components of α1 are α1(11) = α1(22) = −α1(33)/2 = −σ̄0/4, and α2 is supposed to vary
linearly from the value α2(r = a) = −σ̄0/4 to the value α2(r = b) = 0.

Figure 3 compares the yield surfaces associated to the theoretical model with N = 30 phases, [2]’s
model without pre-hardening (with σ̄ = σ̄0 everywhere in the matrix) and the finite element results, for
a porosity f = 0.01.
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Figure 3 – Yield surfaces for kinematic pre-hardening : theoretical model (Present model), Gurson’s
model without hardening (Gurson) and finite element results (FEM). (a) Case 1, (b) Case 2, (c) Case 3
(see text).

4 Conclusion
An approximate yield criterion was derived by performing a “sequential limit-analysis” of a hollow
sphere made of a rigid-hardenable matrix. To approximately account for the heterogeneity of hardening,
the cell was discretized into a finite number of spherically distributed phases in which the quantities
characterizing hardening were considered as homogeneous. The macroscopic yield locus was characte-
rized by an overall criterion expressed in a parametric form, wherein the heterogeneous local hardening
parameters were accounted for through macroscopic variables.

The model was assessed numerically using micromechanical finite element simulations. Overall yield
loci were investigated for both isotropic and kinematic pre-hardening : a very good agreement was ob-
served between the numerical results and the predictions of the model.
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