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Résumé :  

Les matériaux hybrides à comportement multi-physique doivent être étudiés pour contribuer à 

l’émergence d’applications innovantes tirant profit des propriétés intéressantes des éléments constitutifs 

en alliages à mémoire de forme (AMF) et en polymères. Les composites fibre-matrice ou multicouches 

AMF-Polymères pourraient ainsi aboutir à des applications en récupération et conversion d’énergie ou 

en capteurs-actionneurs. Il est donc important de disposer d’outils numériques de prédiction du 

comportement non linéaire multi-physique et multi-échelle de ces matériaux. Nous proposons un outil 

numérique de modélisation du comportement des matériaux composites AMF / Polymères basé sur la 

méthode des éléments finis multi-échelle. Il s’agit d’une approche numérique itérative dans laquelle les 

structures macroscopique et microscopique sont discrétisées par éléments finis ce qui permet de traiter 

les hétérogénéités et les comportements complexes des différentes phases. Le comportement de la phase 

AMF est décrit par une loi basée sur une approche thermodynamique, dans laquelle les forces motrices 

associées aux variables internes (fraction volumique de martensite et déformation de transformation 

moyenne) sont issues du postulat de l’énergie libre de Gibbs. Le comportement du polymère est supposé 

élastique linéaire et isotrope. La procédure est implantée dans le code d’éléments finis Abaqus via la 

routine UMAT. L’état de contraintes, la fraction volumique de martensite, ainsi que les opérateurs 

tangents correspondants sont ainsi calculés et considérés comme entrés au niveau de chaque point 

d’intégration du maillage de la structure pour le calcul de l’équilibre global. Cette approche multi-

échelle est validée sur des cas tests de la littérature. Elle sera par la suite utilisée pour le 

dimensionnement d’une application en composite AMF / polymère. 

 

Abstract :  
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Hybrid materials with multi-physical behavior could be developed to contribute to the emergence of 

innovative applications taking advantage of the interesting properties of shape memory alloys (SMAs) 

and polymer components. The fiber-matrix or multilayer composites SMA-Polymer could result in 

applications in energy harvesting or in sensor-actuators. It is therefore important to have numerical tools 

for predicting the non-linear multi-physical and multi-scale behavior of these composites. In this paper, 

we propose a numerical tool for modeling the behavior of SMA / Polymer composites based on the 

multiscale finite element method. It is an iterative numerical approach where the macro and 

microstructures are discretized by finite element allowing to deal with complex heterogeneities and 

behaviors of different phases. The behavior of the SMA phase is described by a thermodynamic approach. 

The driving forces associated with the internal variables (martensitic volume fraction and mean 

transformation strain) are derived from the postulate of Gibbs free energy. The behavior of the polymer is 

assumed to be elastic, linear and isotropic. The procedure is implemented in ABAQUS finite element code 

via UMAT routine. The stress state, volume fraction of martensite, and the corresponding tangent 

operators are thus calculated and considered as inputs at each integration point of the mesh of the 

macro-structure for the calculation of the global equilibrium. This multi-scale approach is validated on 

some test cases of literature. It will subsequently be applied for the designing of a composite SMA / 

Polymer application. 

 

Mots clefs : Shape memory alloys; Composites; Numerical homogenization; 

Finite elements. 

 

1 Introduction 

 

Shape memory alloys (SMAs) have a wide range of applications such as in aircraft, spacecraft, robotics 

and medicine fields benefiting from superelasticity and shape memory effects [1,2,3]. Recently, hybrid 

materials with multi-physical behavior show features in the energy harvesting or in sensor-actuators 

taking advantages of SMAs’ superelasticity and shape memory effects.  This kind of composites, such as 

fiber matrix and multilayer composites SMA-Polymers, could be developed for innovative applications by 

taking advantage of the properties of shape memory alloys and polymer components. The response of 

composites at the macroscopic level and the effective mechanical behavior of the microscopic level is 

highly related to each other considering the effect of macroscopic factors, such as the thermomechanical 

loading path, the boundary effect of the macrostructure, and the non-linear and multi-physical behavior of 

microstructure. It is therefore important to develop a reliable and efficient numerical tools to model the 

multi-physical, multi-scale and non-linear behavior of these composites.  

During the past decades, various existing multiscale methods have been intensively developed for the 

prediction of mechanical constitutive law of composites. Nezamabadi et al. [4] analyzed the relationship 

between macroscopic and microscopic instability using the finite element square (FE²) method [5,6,7] 

based on the computational homogenization theory. The FE
2
 method achieved the bi-directional real-time 

transmission of macroscopic and microscopic information by "the macroscopic level transmits the strain 

to the microscopic representative volume element (RVE) and the RVE transmits the stress to the 

macroscopic level". In recent years, the FE
2
 method has been applied in elastoplastic problem [8], 

damping [9], heterogeneous shells [10] and SMA fiber composites [11]. Inspired by the predecessors’ 

work, this technique is adopted in our proposed numerical tool for modeling the effective behavior of 

SMA / Polymer composites.  
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In microscopic scale the behavior of SMA is described by a model (see Chemisky et al. [12], Duval et al. 

[13], Armattoe et al. [14]) based on a thermodynamic approach where the driving forces associated with 

the internal variables martensitic volume fraction and mean transformation strain, are derived from the 

postulate of Gibbs free energy. Both a path-dependent transformation strain and a strain mechanism 

related to twin accommodation are taken into consideration in the formulation of the Gibbs free energy 

expression. In addition, the effect of tension-compression asymmetry of the transformation strain 

magnitude, the internal loop, hysteresis and transformation saturation are also considered in this SMA 

behavior model. The behavior of the polymer is assumed to be elastic linear and isotropic at the beginning. 

It will be possible in a future development to take into account the elastic anisotropy and the 

viscoelasticity of these polymers. This multi-scale approach is validated on some test cases in the 

literature. It will subsequently be applied for the designing of a composite SMA / Polymer applications. 

In order to predict the constitutive law or optimize the characteristics of composite materials, models 

taking into account the microstructure specifications, such as morphology and the constituent’s properties, 

have been developed. However, these multiscale methods such as numerical homogenization still remain 

difficult to be adopted by the industries since they are still developed as in-house or “academic” codes 

and their range of application remains generally small because of the need of important implementation 

effort. To overcome this limitation, developing the multiscale method on the basis of commercial 

software which is convenient and stable for the users, such as ABAQUS, is a relatively effective choice 

[15]. Therefore, both a macroscopic model and a microscopic model are built in ABAQUS and are 

coupled via the user-defined subroutine (UMAT). The strain components of the integration points are 

calculated in the macroscopic model discretized by finite element method and is applied on the boundary 

of the associated RVE with periodic boundary conditions (PBC). The stress-state, volume fraction of 

martensite, and the corresponding tangent operators are thus calculated in microscopic model and 

considered as inputs at each integration point for the calculation in macrostructure via UMAT routine. The 

detailed implementation will be illustrated in next section.  

 

 

2 Methods 

2.1 Homogenization 

 

Considering the composite structure is divided into macroscopic and microscopic two levels, a periodic 

multiphase microscopic structure is assumed to describe the heterogeneity of the material. Two models 

are implemented in ABAQUS which represent macrostructure and microstructure respectively. In order to 

distinguish the unknowns of two scales, all the averaged macroscopic values are represented by notation  

(  ). In macroscopic model, the unknown constitutive behavior represented by the tangent operator tensor 

    needs to be calculated by a homogenization method in the micro model via UMAT routine which is 

very convenient to implement user-behavior models, while in micro level all the properties and 

morphology of the different phases are already defined in the process of building the micro model. It is 

worth to mention that one can have a local constitutive law elastic, thermo-elastic, plastic, viscoplastic or 

others defined in ABAQUS’s material library. When the calculation for macroscopic scale is down, the 

macroscopic strain    or its increment     at each integration point will be transferred to the associated 

RVE with periodic boundary conditions for updating the macro stress    or its increment     and tangent 

constitutive behavior    . 

We assume that the two-dimensional microstructure is a periodic RVE with a domain   and external 

boundary    in its initial configuration (see Fig. 1). 
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Fig. 1. 2D square RVE illustration. 

To obtain the effective constitutive law of the heterogeneous 2D RVE model, the macroscopic strain at the 

integration points is applied on the boundary of the corresponding RVE with periodic boundary 

conditions: 

                             (1) 

where   is the microscopic displacement vector and   is the coordinate vector of a given material point at 

its initial configuration. The exponents + and - represent the nodes on the opposite boundaries of RVE. 

Periodic boundary conditions (PBC) satisfy the so-called averaging theorem, which requests that the 

average of the work decomposes into the product of work-averages (see Miehe [16]): 

  

   
      
 

          (2) 

where   and   denote the stress and strain tensors at micromodel,     being the volume of the RVE. The 

behavior of the polymer which can be described by an explicit expression of the constitutive law is given 

as: 

            (3) 

where   refers to elastic tensor associated with phase (r). It is worth noting that any other constitutive law 

can be introduced into the representative volume element, such as SMAs’ behavior which will be 

introduced in the following section. The formulation of microscopic visual work is written as: 

 

 
          
 

                             

                         

  (4) 

To impose the deformation at the RVE, the superposition principle is used to decompose the strain tensor 

(considering the symmetry     =     ) in the following way: 

         
  
  

       
  
  

       
  
  

   (5) 

which results in the decomposition of equation (1): 

                        
                         (6) 

      

  
   

Matrix 

Inclusion 



23
ème

 Congrès Français de Mécanique                              Lille, 28 Août au 1
er

 Septembre 2017 

 

where exponents               denote a set of opposite edges i  under strain        in direction j. Periodic 

boundary conditions are introduced automatically by the Equation function in ABAQUS using python 

script. With the macroscopic strain    loaded on the microscopic boundary, we can solve the microscopic 

problem and calculate the macroscopic stress    by: 

 

   
 

   
 
 

   

 

 

     (7) 

where    denotes the volume associated to the m
th
 integration point. Following equation (1) the strain 

between the two levels have relation as: 

 

   
 

   
 
 

   

 

 

     (8) 

          and     and    are linked by: 

               (9) 

 

 

2.2 Nonlinear multilevel procedure 

 

The iterative process between the micro and macro scales is mainly divided into two parts, as shown in 

Fig. 2. 

 

Step 1: Initialization 

At the beginning of an increment in the calculation of macro model, we have to obtain the effective 

constitutive behavior by the homogenization of the micro model. To compute the tangent modulus    , a 

unit stain        is applied on the boundary of the micro model. This procedure is carried out in the 

framework of UMAT routine using the Static Linear Perturbation Step object in ABAQUS: 

            (10) 

 

Step 2: Convergence analysis 

When the macro model got the effective behavior and calculated the macro strain increment    , UMAT 

will transfer the strain increment     at each integration point to the micro model. Then a Static Step in 

ABAQUS is performed in the micro model with the applied strain     and the averaged stress    at each 

macroscopic integration point is calculated for checking the convergence of the macro model. The Static 

Step allows the micro model to upgrade its stress and strain state after each calculation. If the convergence 

analysis of the macro model is not satisfied, a new strain increment      in the current ABAQUS 

increment will be transferred to the micro model to compute a new stress at the micro level.  
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1. Initialization  

o Apply periodic boundary 

conditions on the RVE by Python 

script 

o Solve the RVE problem using a 

Static Linear Perturbation Step 

object 

o Compute the constitutive 

modulus     

2. Convergence Analysis 

o Restart the analysis with a Static 

Linear Step by applying     on the 

periodic boundaries 

o Compute macroscopic stress and 

update the strain in microscale 

o Define     in UMAT associated to 

the macrostructure 

o Solving of the macroscopic 

problem 

o Update the strain and extract the 

macroscale strain increment     

Macrostructure analysis 

o Update stresses 

o Check for the convergence 

      • if not converged ⇒ Next iteration: 

Steps 2  

      • else ⇒ Next load increment: Step 1 

 

Fig. 2. The nonlinear interactive procedure between the micro and macro models. 

 

 

2.3 SMAs constitutive behavior 

      

As we have mentioned previously that different phases in the micro model can be defined with elastic, 

thermo-elastic or other mechanical properties in ABAQUS’s material library, one can also introduce the 

user defined SMA materials to the micro model by UMAT. Here we adopt the constitutive model 

developed by Chemisky et al. [12] which considered three main physical mechanisms: the martensitic 

transformation, the reorientation of martensitic and the inelastic accommodation of twins in self-

accommodated martensite. Research shows that this model can capture the behavior of SMAs even under 

complex thermomechanical paths, especially when transformation occurs at low stress level. 

We assume that behavior of SMA is characterized by a RVE containing martensitic and austenitic phases. 

Considering an additive decomposition of strain without plastic or viscoplastic strain, the total strain of 

the SMA is written as:  

                    (11) 

where    denotes the elastic strain,     denotes the thermal strain,    represents the inelastic strain due to 

martensitic transformation and        refers to the inelastic strain due to the accommodation of twins 

between martensitic variants. 

Assuming both martensitic and austenitic phases are isotropic and have the same thermo-elastic constants, 

the elastic strain and the strain due to thermal expansion are expressed as: 

         (12) 

MICRO 
MACRO 
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                (13) 

where   is the isotropic fourth order compliance tensor,   is the isotropic thermal expansion tensor, and 

     is the reference temperature where thermal expansion strain is selected to be null. Transformation 

strain can be expressed as the average value over the a micro-RVE of local transformation strain field: 

          (14) 

where   denotes the average martensitic volume fraction and describes the martensitic transformation,      

denotes the mean transformation strain over the martensite volume and describes the reorientation of 

martensite.  

The strain associated to the inelastic accommodation of twins between martensitic variants is written: 

                    (15) 

where     denotes the formed self-accommodated martensitic volume fraction and          denotes the 

mean twin accommodation strain over the martensitic volume and describes the  inelastic accommodation 

of twins in self-accommodated martensite. With the four presented internal variables  ,    ,    ,           
we can define the Gibbs free energy potential and deduce the transformation force   , orientation force 

     

and twin accommodation force        with associated criterions for adjusting the loading path. This 

constitutive model is implemented in the UMAT routine of the micro model. 

 

 

3 Numerical results 

3.1 Effective behavior of RVE 

 

In this section, the simulation of several isothermal tension and shear loading paths are performed to 

study the effective superelastic behavior of the homogenized hybrid SMA / polymer composites. 

Considering a 2D RVE made of elastic polymer inclusion and SMA matrix as shown in Fig. 1, both 

tension in direction 11 and shear in direction 12 with PBC are tested with the mechanical properties listed 

in Table 1.   ,  s are the Young's modulus and Poisson's ratio respectively for the SMA and   ,  p 

respectively for the polymer. Since the temperature T in the simulations is above the austenitic finish 

temperature   , SMA matrix presents a superelastic behavior. The element type CPS3 (2D triangular 

continuum solid and isoparametric element with linear interpolation and plane stress assumption) is 

adopted in the fine meshed RVE while the volume fraction of the inclusion    is 0.3 (see Fig. 3). In Fig. 3, 

the nodes on the boundaries are highlighted with circles as a result of the introduction of PBC with 

Equation in ABAQUS’s Interaction module. 

 



23
ème

 Congrès Français de Mécanique                              Lille, 28 Août au 1
er

 Septembre 2017 

 
 

 

Fig. 3. The fine meshed RVE with CPS3 element and the PBC on the boundary nodes. 
 

 

 

Table 1  

Mechanical properties for hybrid SMA / polymer composites. 

         p    T                s        

7000 0.3 0.3 0 70000 0.3 -50 
       

                    
       

          
           

             
    

-20 8e-6 0.05 0.04 0.04 5 6 
       

                                                     

-50 -20 0.6 100 4 1000 40000 
       

              

50       
       

 

For the first case, we assume the matrix is made of SMA materials and the inclusion is made of elastic 

polymer. Fig. 4 (a) and (c) show the effective behavior of RVE in tension test with applied stretch strain 

intensity up to 2%, 3% and 4% respectively, while Fig. 4 (b) and (c) show the effective behavior of RVE 

in shear test with applied shear strain intensity up to 2%, 3% and 4% respectively. The RVE inherits the 

superelasticity of the SMA components and the loading path is highly related to the loading history (see 

Chemisky et al. [12]). 

The effective stress    and strain    are calculated by the averaging of variables in the whole RVE volume 

using Eqs. (7) and (8). In Fig. 4 (a), the maximum strains applied on the boundary with PBC are 2%, 3% 

and 4% and the associated averaged strains are 1.94%, 2.94% and 3.9% respectively, with the relative 

error of the effective strain being controlled in about 2%. In Fig. 4 (b) the relative error of the effective 

shear strain is controlled in about 0.03%. We conclude this magnitude of error is small enough to satisfy 

the averaging theorem. 

For the second case, same simulations are performed by only swapping the material behaviors of the 

components of the RVE of the first case. As shown in Fig. 5, the whole stiffness of the RVE, the width of 

the hysteresis loops and the transformation’s effect on the effective stress-strain slope are much smaller 

than the first case, since the volume fraction of the SMA is only 0.3. At the beginning of the reverse 

transformation in Fig. 5 (c) and (d), the averaged martensitic volume fraction varies much quicker than in 
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Fig. 4 (c) and (d). This is because of the phase transformation in the second case is almost synchronous 

but in the first case are not, as a result of the difference of the stresses distributed in the matrix. 

The internal loops are observed in the partial loops of both the first and the second cases. During the 

forward transformation, the stress-strain loading paths are coincided while during the reverse 

transformation, the occurrence of the reverse transformation is dependent on the current martensitic 

transformation    (see Chemisky [12]). As the inclusion is elastic in the first case, the stress-strain slope in 

the partial loop varies slower than for the pure SMA materials, but the RVE still shows obvious hysteresis 

related to the phase transformation. When the applied strain vanishes during the reverse transformation, 

stress in the RVE is not vanishing because the reverse transformation is not complete and the martensitic 

volume fraction is not equal to 0. 

 

  
(a) The effective stress-strain behavior of RVE 

in  

      tension test with applied strain intensity up 

to  

      2%, 3% and 4% respectively. 

     (b) The effective stress-strain behavior of RVE in  

           shear test with applied strain intensity up to   

           2%, 3% and 4% respectively. 

  

  

 

 
(c) Averaged martensitic volume fraction         
      versus strain associated with Fig. 4 (a). 

      (d) Averaged martensitic volume fraction      
            versus strain associated with Fig. 4 (b). 
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Fig. 4. Isothermal tension and shear loading tests for SMA matrix and elastic inclusion RVE. 

  

 

  
(a)  The effective stress-strain behavior of RVE                        

       in tension test with applied strain intensity    

       up to 2%, 4% and 6% respectively. 

(b) The effective stress-strain behavior of RVE      

      in shear test with applied strain intensity up    

      to 3%, 4% and 5%, respectively. 

 

 
 

(c) Averaged martensitic volume fraction       
      versus strain associated with Fig. 5 (a). 

   (d) Averaged martensitic volume fraction      
         versus  strain associated with Fig. 5 (b). 

 

Fig. 5. Isothermal tension and shear loading tests for SMA inclusion and elastic matrix RVE. 

 

 

3.2 Bending test 

 

As shown in Fig. 6, an elastic cantilever beam subjected to a concentrated load   is used to get a reliable 

loading history of a bending case, with Young's modulus      =7000MPa,      =0.3 (corresponding to 

the elastic behavior of the polymer) and   = 50N. The strains and step times of point A are extracted 

during the loading history and applied on the boundary of the microscopic RVE model. For this case the 
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volume fraction of the inclusion is set to 0.3, while other properties remain the same as the previous 

section. 

With this loading conditions, the obtained stress versus strain diagram of two main directions 11 and 12 

are illustrated in the Fig. 7. Like the tests of the RVE under pure traction or shear deformation, the 

hysteresis behavior is captured in Fig. 7 (a) when the maximum strain      is up to 0.05. During the 

loading process, the stress-strain slope becomes smaller when the averaged strain      reaches 0.02, since 

the increase of the averaged martensitic volume fraction    is fast with the increase of      . After strain      

reaches 0.04, the slope of the averaged martensitic volume fraction    versus strain      diagram decreases, 

see Fig. 7 (c), because the transformation process has almost reached saturation in some area of the 

inclusion. During the reverse transformation process, the austenitic volume fraction quickly generates 

when strain      reaches 0.035 as shown in Fig. 7 (c), which results in the change of the slope of the 

effective stress-strain diagram. When the strain      reaches 0.01, the reverse transformation is almost 

finished and the slope of the unloading path in Fig. 7 (a) is constantly close to the slope when the loading 

loop begins. Finally, the hysteresis effect due to the transformation of the SMA inclusion is observed in 

Fig. 7 (a). In Fig. 7 (b). Similar hysteresis effect of the stress-strain diagram in direction 12 is also 

simulated. During the forward transformation, the effect of the transformation to the slope of the stress-

strain diagram is not as obvious as the effect in direction 11. When the strain      decreases to 0.015, the 

reverse transformation in most area of the SMA inclusion begins which leads to the change of the slope in 

Fig. 7 (b). At last the averaged stress in the RVE does not completely vanish because the reverse 

transformation is not complete and the martensitic volume fraction is not equal to 0. In general, these 

results show that the homogenized micro model made of SMA inclusion and polymer matrix is able to 

simulate the transformation behavior and hysteresis during the loading loops for bending test.  

 

 

 
 

 

 

 

 

 

 

 

Fig. 6. Elastic cantilever beam subjected to a concentrated load. 

  
Point A 

100 mm 

10 mm 
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(a)  The effective stress-strain behavior in   

      direction 11.       

                  

     (b)  The effective stress-strain behavior in   

            direction 12.                        

  
(c)  Averaged martensitic volume fraction      
      versus strain      diagram. 

 

      (d)  Averaged martensitic volume fraction       
             versus strain      diagram. 

 
Fig. 7. Bending test for SMA inclusion and elastic matrix RVE. 

 

 

4 Conclusion 

 

Based on the study of above tests, the effective behavior of the SMA / polymer composites shows the 

characteristics of superelasticity and its influence by the elastic behavior of the polymer. As the 

combination of the homogenization method and SMA model shows good stability, in the next step we will 

introduce the homogenized RVE model to the FE
2
 procedure implanted in ABAQUS. 
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