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Résumé :
Nous présentons une méthode de couplage fluide-structure conçue pour étudier les capsules s’écoulant
en environnement confiné. Le solveur fluide, qui est basé sur la Méthode des Volumes Finis, est couplé
à un solveur solide à Éléments Finis au moyen de la Méthode des Frontières Immergées. Nous mon-
trons les résultats de validation d’une étude de convergence pour un test simple : la relaxation d’une
capsule sphérique qui est initialement déformée en un ellipsoïde relaxé dans un canal à section carrée
en environnement fluide au repos.

Abstract :

We present a fluid-structure coupling method designed to study capsules flowing in confined environ-
ment. The fluid solver, that is based on the Finite Volumes Method, is coupled to a Finite Elements solid
solver using the Immersed Boundary Method. We show the validation results of a convergence study for
a simple test: the relaxation of a spherical capsule that is initially deformed into an ellipsoid released
in a square cross-section channel in quiescent fluid environment.

Mots clefs : Microcapsules, Interaction Fluide-Structure, Environnement
Confiné, Volumes Finis, Éléments Finis, Méthode des Frontières Immergées.

INTRODUCTION
Encapsulation consists in protecting a substance from the surrounding medium with a solid or flexible
envelope. One of the main goals of encapsulation is the transport of the substance and the control of
its release, whether it is to be prevented or operated at a desired location or rate [1]. Understanding the
capsule dynamics provides the possibility to better control the potential release of the inner substance.
Flexible capsules find applications in various fields, particularly in biomedical areas (e.g. targeted drug
delivery) and food industry. Over the last decades, the flow around flexible capsules and the resulting
fluid-structure interactions have been studied experimentally [2, 3, 4], analytically [5, 6] as well as nu-
merically [7, 8]. Small scale experimental setups can provide results in various confined geometries and
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flow configurations, but the observations are complex due to the scale of the microparticles. Analytical
calculations give comprehensive accurate results but are restricted to simple flow configurations and
small deformations of the capsule shape. The advantage of numerical simulations is that they provide a
good approximation of quantities that are not measurable experimentally (e.g. membrane tension) and
that would be difficult to model analytically (e.g. capsules flowing in complex geometries). They can
also simulate a wide range of properties for the flow and capsule, and parameters for the case studied.
The fluid-structure interactions of the capsule wall deformation with the internal and surrounding fluid
flows can be modeled choosing between two approaches to treat the capsule and the fluids: Lagrangian
or Eulerian. The different existing fluid-structure solvers can thus be classified in three groups: fully La-
grangian, fully Eulerian and the mixed Eulerian-Lagrangian. Among the fully Lagrangian approaches,
one can mention the Boundary Integral Method [7], which is very precise, computationally efficient
and robust but only applicable to Stokes flow. On the other hand, fully Eulerian methods comprise the
level-set method and Volume Of Fluids (VOF) methods. The latter have the drawback of interface re-
construction, which is hardly compatible with a continuous mapping. The level-set method is a relevant
choice: despite the fact that early implementations were neither able to conserve the fluid enclosed mass
[9] nor to treat the membrane elastic behaviors, these issues have been solved since then [10]. Finally,
the mixed Eulerian-Lagrangian approaches include the Immersed Boundary Method (IBM) [11, 12],
which is very popular thanks to its extreme simplicity of implementation. It has the drawback of being
typically unstable with stiff membranes but this issue has been recently solved [13]. It is, however, stable
in the case of flexible membranes, but capsule flow simulations in complex confined geometries remain
challenging [13]. Our aim is to develop a tool able to compute the fluid-structure interactions in confined
geometries at potentially non-zero Reynolds numbers. The finite elements solver of Caps3D [7] is cou-
pled with the open-source finite volume solver Basilisk that has been designed to solve multiphase flows
[14]. The objective of the present paper is to validate the numerical code by considering the relaxation
of a pre-deformed capsule within a confined environment.

PROBLEM STATEMENT
We consider an initially spherical capsule of radius a placed in a square cross-section channel of lengthL
and half-width l (Figure 1). LetO be the center of the channel and x the coordinate along the centerline
longitudinal axis of the channel, so that it defines the axisOx. Let y and z be the two other (transversal)
coordinates. We respectively call Si, So and Sl the inlet, outlet and (four) lateral sections, the latter
being the walls of the channel. The capsule is constituted of a membrane enveloping an internal fluid.
The internal and surrounding fluids have the same density ρ and the same viscosity µ. The capsule
membrane surface shear modulus isGs (Figure 1). We neglect the wall thickness and model the capsule
wall as a 2D membrane. We thus neglect bending effects. The objective of the fluid-structure solver will
be to study the dynamical flow of the capsule flowing in the channel under an average inlet flow velocity
V . We use as physical kinematic scales l to non-dimensionalize the lengths and TV = l/V to non-
dimensionalize time. The dimensionless coordinates are x′ = x/l, y′ = y/l, z′ = z/l, t′ = t/TV . The
scale used to non-dimensionalize the forces is ρV 2l2. The capsule motion and deformation are governed
by the two following dimensionless numbers: the capsule-to-channel size ratio a

l , the capillary number
Ca = µV

Gs
and the Reynolds number Re = ρV l

µ , which is the ratio of the inertial to viscous forces. The
capillary and Reynolds numbers are related by Ca

Re = µ2

ρGsl
. For the sake of simplicity, in the following the

prime symbols are omitted. To validate the code, we presently consider the relaxation of a capsule pre-
deformed into an ellipsoid of half-great axis 2a along Ox and half-small axes a/

√
2 (Figure 2). In this
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Figure 1: Schematic of the framework. A spherical capsule of radius a and surface shear modulusGs is
placed in a square cross-section channel of length L and half-width l. The fluid inside and outside the
capsule both have a density ρ and a viscosity µ.

Figure 2: Scheme of the validation case: a spherical capsule of radius a is pre-deformed into an ellipsoid
of axes (2a, a/

√
2, a/
√

2) in a square cross-section channel of length L and half-width l. The half-great
axis is along Ox and the half-small axes are in the yOz plane.

case, the velocity field is induced by the elastic deformation of the capsule. Following the experimental
study of Gires et al. [15] on the relaxation of microcapsules, we set the characteristic velocity scale to
be V = 0.05Gs

µ . At time t = 0, the pre-deformed capsule is centered with the center O of the channel
and placed in a fluid at rest.

NUMERICAL METHODS

Meshing of the capsule and fluid domains
Triangular second-order finite elements are used to mesh the capsule wall. Let L be the Lagrangian
configuration, which is the set of the Lagrangian nodes X = (Xx, Xy, Xz) at time t. The meshing
L is built iteratively from an icosahedron [7]. The typical Lagrangian mesh size is h. Two different
values of h are considered here: h = 0.039 and h = 0.02, corresponding respectively to 10 242 and
40 962 Lagrangian nodes (card(L) ∈ {10 242; 40 962}). The mesh size h = 0.078 has also been tested
but the mesh is found to be too coarse to provide good results. The fluid domain is meshed with a
Eulerian regular cartesian grid. Let E be the set of the Eulerian cubical mesh centers (x, y, z). The
non-dimensionalized length of the channel is set to L = 8. The Eulerian mesh size is fixed and set to
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be ∆x = 1/32 = 0.03125. The number of Eulerian meshes is 1 048 576 (card(E) = 1 048 576)). The
mesh size ∆x = 1/16 = 0.0625 has also been tested but is not presented here because it is too coarse
to provide precise results. Four timesteps are considered: dt = 10−3, dt = 5 × 10−4, dt = 2 × 10−4

and dt = 10−4.

Membrane equilibrium equations
Themembrane solver code, Caps3D, uses the Lagrangian configurationL to compute the non-dimensionalized
Cauchy tension tensor T , which provides the non-dimensionalized tension (lineic force) τ exerted in a
direction n by τ(n) = T .n. This tensor is calculated using the strain energy function ws describing the
material constitutive law. In the present study we model the capsule behavior using the Skalak et al. law
[16]. For this law, the non-dimensionalized surface energy ws is given by:

ws =
1

4

(
I2

1 + 2I1 − 2I2 + CI2
2

)
, (1)

where C is a constant parameter that relates the surface shear modulus Gs and surface area dilatation
modulus of the capsule. I1 and I2 are the first and second strain invariants of the surface evolution. The
Skalak et al. law is particularly adapted to model the strain-hardening behavior of cells, such as red
blood cells which have a quasi surface-incompressible membrane (C � 1). The surface load q exerted
by the fluid on the membrane is given by the membrane equilibrium law

∇s.T + q = 0. (2)

By the action-reaction principle, −q is the surface load exerted by the membrane on the fluid. More
details may be found in [7, 16].

Fluid dynamics equations
The fluid equations are solved over the Eulerian grid E by the open-source code, Basilisk. In order to
compute the Eulerian velocity field, Basilisk [14] uses the incompressible (∇.v = 0), three-dimensional
Navier-Stokes equations

∂v

∂t
+ (v.∇)v = −∇p+

1

Re
∆u+ f, (3)

where v = (vx, vy, vz) is the fluid velocity, ρ = ρ(x, y, z, t) the fluid density and µ = µ(x, y, z, t) the
dynamic viscosity. The Navier-Stokes equations are solved using a finite volume approach based on a
projection method [17]. When solving the equation in the case of a non-stationary Stokes flow, the non-
linear term (v.∇)v is set to zero. The spatial discretization is done using a octree cubic cell allowing
dynamic grid refinement in the lubrication film. The source-term f is the force per unit volume exerted
by the capsule on the fluid. The boundary conditions correspond to those of a fluid at rest confined
within a channel. For the speed v, we set a zero-Dirichlet boundary condition on the inlet and lateral
cross-sections (Si and Sl) and a zero-Neumann boundary condition on the outlet section So. Additional
optional boundaries are set for the pressure p: a zero-Neumann condition on Si and a zero-Dirichlet
condition on So [17].

Coupling strategy and method
The coupling strategy is based on the Immersed Boundary Method [11]. At each timestep:

• the forces are transmitted from the capsule membrane to the fluid as source-terms.
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• the membrane capsule is advected by the fluid towards a new configuration.

The surface elastic load q is converted to fluid source-term volume forces f using the following two
steps:

• the surface load −q, defined at each X ∈ L, is first integrated into a point force F (X). This
integration is made using a 3 Hammer point scheme. This guarantees the force conservation over
each finite element.

• the point forceF (X) is then spread into the source-term force density f by the immersed boundary
method. We use the classical cosine immersed boundary filter δc [11]:

f(x, y, z) =
∑

X=(Xx,Xy ,Xz)∈L

F (X)

(∆x)3
δc

(
x−Xx

∆x

)
δc

(
y −Xy

∆x

)
δc

(
z −Xz

∆x

)
, (4)

where
∀s ∈ R, δc(s) =

1

4

(
1 + cos

(πs
2

))
I|s|≤2. (5)

This filter is theoretically of order 1 [12] but is found to be of an order between 1 and 2 in practice.

The force density f is injected into equation (3), which is solved to provide the new velocity field v(t+dt)

and update the position of the capsule nodes:

X(t+ dt)−X(t)

dt
=

∑
(x,y,z)∈E

v(x, y, z, t+ dt)δl

(
x−Xx

∆x

)
δl

(
y −Xy

∆x

)
δl

(
z −Xz

∆x

)
, (6)

where
∀s ∈ R, δl(s) = (1− |s|) I|s|≤1. (7)

This filter is of order 2 [12].

Parameters of the problem
The physical parameters are chosen to model an artificial microcapsule released in the tube:

• Capsule-to-channel size ratio: a/l = 0.85;

• Capillary number: Ca = 0.05;

• Reynolds number:

– Re = 1 in the case of non-stationary Stokes flows, since the coupled problem enforces that
the viscous time scale rhol2

µ be of the same order as the convective time TV .

– Re = 10 in the case of the Navier-Stokes flow.

• Skalak law with C = 1.

Criteria to be observed
Convergence study criteria

The criteria for the convergence at the final time t = 10 of the simulation are:
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• the maximum error norm over L of the difference of the position X for the timestep dt of the
considered simulation to that obtained with the smallest integration timestep dtmin = 10−4:

N∞ = ‖Xdt −Xdtmin
‖∞ = maxX∈L‖Xdt −Xdtmin

‖ (8)

• the maximum norm over E of the difference of the fluid speed to its theoretical value at t = +∞.
In this asymptotical state, the relaxation is over and the fluid is at rest. Thus, the criterion becomes:

vmax = ‖v‖∞ = max(x,y,z)∈E‖v(x, y, z)‖ (9)

• the relative membrane surface difference between the Lagrangian configuration L and the refer-
ence spherical shape L0: dSLSL0

=
SL−SL0
SL0

, where SL0 = 4πa2

• the relative membrane volume difference between the Lagrangian configuration L and the refer-
ence spherical shape L0: dVLVL0

=
VL−VL0
VL0

, where VL0 = 4
3πa

3. This variation is an error, since it
should be zero.

Transient state study criteria

During the transient state i.e. t ∈]0, 10[, the characterization can be done with the parameters of the
inertia ellipsoid ε of L. The Taylor parameter is defined by D1,2 = (Lx − Ly)/(Lx + Ly), where Lx
and Ly are respectively the half-great and half-small axis of ε. Under Stokes flow, this approximation is
valid: even though the capsule is influenced by the confinement, its shape L remains roughly ellipsoidal
during the transient state (Figure 3). On the contrary, under inertial flow conditions (i.e. solving the full
Navier-Stokes equations), the shape is too different from being ellipsoidal. We propose to replace the
D1,2 parameter with a parameter D̃1,2 = (L̃x− L̃y)/(L̃x + L̃y), where L̃x = maxL(Xx)−minL(Xx)

and L̃y = maxL(Xy) − minL(Xy) are the differences of the extremal coordinates of the Lagrangian
grid respectively along Ox and Oy. This new definition allows negative values for D̃1,2. For the sake of
simplicity, in the following this new parameter is also called "Taylor parameter".

RESULTS

Generalities
The capsule relaxes to its reference spherical geometry. Figure 3 shows the time evolution of the capsule
shape for h = 0.039 and dt = 5 × 10−3 in Stokes flow. At time t = 5 one sees that the capsule shape
is influenced by the walls of the channel, the capsule wall becoming parallel to it.

Final time results
When comparing the capsule shape L at time t to L0, we see that the infinite norm ‖X −X0‖∞ has an
order of magnitude ∼ 1%, depending on the Lagrangian mesh size h and time step dt. It is consistent
with the evolution of L towards L0 over time. Since the final time t = 10 is far from the end of the
relaxation process which is infinite, the relaxation is uncomplete and this infinite norm is minorated over
(h,∆x, dt) ∈ (R+,∗)3 by some constant K > 0. Figure 4 presents the values of the 4 criteria defined
in subsection 3.6.1. The same orders of magnitude are obtained for the four criteria: they lie between
∼0.1% and ∼1% for N∞ (4.a), vmax (4.b), dSLSL0

(4.c) and dVL
VL0

(4.d):
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Figure 3: Shape evolution of the capsule relaxing in the channel at t = 0 (a), t = 5 (b), and t = 10 (c)
for h = 0.039 and dt = 5× 10−3 in Stokes flow.

• Values of (4.a) prove that the error of convergence has an order of magnitude ∼ 0.1% for the
smallest timestep dtmin = 10−4 ;

• Values of (4.b) show that the fluid is almost at rest, but not totally because the final time is (t = 10);

• Values of (4.c) show that the area of L always differ by less than 1% from that of the reference
shape L0;

• Values of (4.d) show that the volume conservation error is always clearly lower than 1%. They
are of the same order or smaller than those obtained by Caroll and Gupta [18]. In the best case,
the error is 0.02%, which is indeed much better than [18].

We observe the following effects of the numerical parameters:

• Figure 4.a shows that the errors are larger with h = 0.020 than with h = 0.039, which appears to
be more adapted to ∆x = 0.03125 in this test. We can deduce from this (and from the fact that
the above mesh size is too coarse - see subsection 3.1) that h

∆x = 0.039
0.03125 = 1.248 is the ideal

Lagrangian-to-Eulerian mesh size ratio for our tool and for this test.

• The convergence of N∞ while varying the timestep dt is of order ∼1.5 for h = 0.039 (in Figure
4.a, the slope for h = 0.039 is ∼1.5) and lower for h = 0.02. This lower convergence speed
confirms the above conclusion about the optimal ratio h

∆x = 1.248.

Transient states results
We present in Figure 5a the Taylor parameter as a function of time for the Stokes flow and in Figure 5b
for a Navier-Stokes computation with Reynolds number Re = 10. We see in Figure 5a a continuous
decrease of D1,2 under Stokes flow: in Figure 5b the influence of the inertial term appears through
damped oscillations around the equilibrium state.

CONCLUSION
We have built and tested a tool which couples a finite volume fluid solver with a finite element solid
solver using the Immersed Boundary Method. On a simple relaxation case, the coupled solver is shown
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to give satisfactory numerical precision under Stokes flow, the timestep convergence being of the order
1.5. When comparing the capsule relaxation under Stokes and Navier-Stokes flow conditions, we find
that oscillations in the capsule shape already occur for a flow Reynolds Number of 10. The oscillations
are due to inertia. The numerical precision is comparable to that of classical methods, which shows
that the immersed boundary method is adapted to solve transient problems. The present approach is
also interesting for the advantages of the fluid solver itself. It is massively parallel (OpenMP and MPI)
and can thus be used for large spatial simulations. Furthermore, the fluid solver also has an adapta-
tive dynamic meshing that is useful to compute numerical solution near walls. Finally the viscosity
and mass density can be changed dynamically, which is interesting to model solid or non-Newtonian
cores for capsules flowing in a capillary. The novelty is that the fluid-structure code can resolve the
flow of capsules of aspect ratios greater than 1 and non-zero Reynolds numbers, which are required to
study capsules in microsystems. The fluid velocity field is also studied by considering the changes in
the streamlines when varying the capillary number, which is crucial for the understanding of the fluid
dynamics. The numerical model can be a useful complement to experimental measurements, as it pro-
vides local field quantities (fluid pressure and velocity, membrane tensions, ...), which cannot easily be
evaluated experimentally, as well as information on topographic changes in streamlines. It thus provides
useful additional information for the study of capsules in microsystems.
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a. b.

c. d.

Figure 4: Convergence study: infinite norm error of the Lagrangian nodes positions to the case of the
smallest timestep dtmin = 10−4 (a); Maximum speed norm in the fluid (b); Surface variation of the
Lagrangian configuration compared to the reference spherical shape (c); Volume variation (d) (which is
an error since it should be zero). Four different timesteps (dt = 10−3, dt = 5× 10−4, dt = 2× 10−4,
and dt = 10−4) and two different Lagrangian meshes (h = 0.039 and h = 0.020) are tested.
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a. b.

Figure 5: Time evolution of the Taylor parametrer (a) for Stokes flow and for a Navier-Stokes computa-
tion with Re = 10 (b).


