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Abstract. A fish ladder (or fishway, fish pass) is a hydraulic structure con-

structed near dams. Such fish passage permits to immigrant fishes to cross to
theirs productions and feeding areas or from the cold area to the hot one for

species which do not withstand the cold period.

Our purpose is to establish an optimal structure that allows fish to pass
through the dams with less effort. In order to achieve this challenge, we will

give a mathematical formulation of channel composed of ten pools with verti-

cal slots for obtaining a flow pattern effective for a wide range of species.
We proceed with the study of the state system given by the shallow water

equations and the objective function which is related to fish’s swimming apti-

tudes. Numerical simulations for ten pools channel are given to illustrate the
efficiency and viability of the technique.

Key Words: Shallow water equations, optimal shape design, fishways, hydraulic
engineering.

1. Introduction

Many species of salmon, shad, giant catfishes, dourado, sturgeons and eel migrate
between the sea and the rivers to complete their life cycle. Free migration routes
for fish are crucial to their survival. We take interest in diadromous fish species
which immigrate between sale and fresh water.

We distinguish some types of diadromous fish: Anadromous fish (as salmon,
smelt, American shad, hickory shad, striped bass, lamprey, gulf sturgeon,...) which
live and grow in the salt water, and migrate to freshwater rivers and lakes to repro-
duce. The Anadromous fish eventually return to freshwater to spawn. About half
of all diadromous fish in the world are anadromous. Adult Catadromous (American
eel, European eel, inanga, shortfin eel, longfin eel) live in fresh water, then migrate
to the sea for breeding. After hatching, they migrate back to freshwater where they
stay until growing into adults. Catadromous fish undertake a great migration from
freshwater to spawn in the marine, and they die there due to the effort made for
migration. About one quarter of all diadromous fish in the world are catadromous.
Amphidromous species (bigmouth sleeper, mountain mullet, sirajo goby, river goby,
torrentfish, Dolly Varden) migrate between estuaries and coastal rivers and streams
(in both directions). Amphidromous fish live in freshwater for breeding and they
leave to the marine for feeding and growing.

The presence of dams without fish passes appears to be a major contributing fac-
tor in the decline of migratory species. Fishways have been designed to provide safe
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passage for migratory species inhabiting the river to get pass towards their breed-
ing or feeding areas. The utility of such systems has been demonstrated around
the world. The best general reference here is Clay [3] for the pool and weir type,
Katopodis et al. [4] for the Denil fishways and for the vertical slot type Rajaratnam
et al. [8].

Vertical slot ladders are quite common and use a large narrow slot to control
water flow and depths in the pools between slots. This allows fish to swim upstream
without leaping over an obstacle. This design reasonably handles the seasonal fluc-
tuation in water levels and is not sensitive to impoundment or upstream water
surface elevation changes.

The paper is devoted to the study of vertical slots fishway. The aim of this work
is to assess the possibility of using a two-dimensional shallow water model to com-
pute the flow pattern in vertical slot fish ladder and deduce an optimal structure
allows fish to cross the obstacle in a convenient conditions.

The reminder of the paper is organized as follows. The next section is dedicated
to the mathematical formulation and the introduction of the objective function
related to the optimal shape design. Then, in the third section, a finite volume
discretization for the shallow water equations using a total variation diminishing
(TVD) scheme combined with a gradient free algorithm is proposed. The last
section provides numerical results obtained for a standard ten pools channel.

2. Mathematical model

A vertical-slot fishway, shown in Figure 1, is a rectangular channel Ω ⊂ R2 with
a sloping floor that is divided into 10 pools by baffles. The pools have a double
function: they ensure a proper dissipation of the energy of water flowing through
the fish pass, and provide resting areas for the fish. It is worth pointing out that
the geometric features of each pool are with a width of 0.97m, a length of 1.213m,
also two transition pools, one at the beginning and other at the end of the channel
with the same width and a length of 1.5m. Inside each pool, two baffles are built.
They have a width of 2r = 0.061m and are vertical to the lateral fishway boundary.
The channel is constructed with a slope relative to the ground.

Figure 1. Fishway and ground plan Ω: each pool is designed by
dashed lines
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The shallow water equations are used to simulate a variety of problems related to
environment and coastal engineering. These equations can be obtained by integrat-
ing the incompressible Navier-Stokes equations in depth and taking into account
the kinematic and kinetic boundary conditions. The 2-D shallow-water equations
with source terms may be written as

∂H

∂t
+
−→
∇ .
−→
Q = 0 in Ω× (0, T )

∂
−→
Q

∂t
+
−→
∇ .(
−→
Q ⊗

−→
Q

H
) + gH

−→
∇(H − η) =

−→
f in Ω× (0, T )

(2.1)

Where H is the water depth; −→u = (u1, u2) is the velocity vector; u1 and u2 are
the x and y components of flow velocity, respectively; Q = (u1H,u2H) is the unit-
width discharge; η is the bottom geometry; g is the gravitational acceleration and−→
f represents all effects of bottom friction and atmospheric pressure.

We introduce three parts of the boundary of Ω: the lateral boundary denoted by
γ0, the inflow boundary denoted by γ1, and the outflow boundary denoted by γ2.
We take for −→n the unit outer normal vector to boundary. To obtain a well-posed
problem, we add to this system an initial and boundary conditions defined by:

H(0) = H0,
−→
Q(0) =

−→
Q0 in Ω,

−→
Q.−→n = 0 curl

(−→
Q

H

)
= 0 on γ0 × (0, T ),

−→
Q = Q1

−→n on γ1 × (0, T ), H = H2 on γ2 × (0, T )
(2.2)

The geometry of the vertical slot based on the use of guide elements to lead
smooth hydraulic flow into the next slot. The positioning of the guide elements
was carried out at two different locations, a and b, which configure the shape of the
fish ladder Ω (Figure 2).

Figure 2. Prototype geometry: details of slot and pool
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The design variables a and b are subject to constraints in order to ensure a posi-
tive influence on the flow in the individual pools. These constraints are formulated
as

1

4
1.213 ≤ y1, y3 ≤

3

4
1.213

0 ≤ y2, y4 ≤
1

4
0.97

(2.3)

In order to provide a comfort conditions during the fish passage and permit to a
maximum number of fishes to pass to the river upstream, the following constraints
are introduced

y3 − y1 ≥ d1 = 0.1

y2 − y4 ≥ d2 = 0.05

(2.4)

A shape optimization problem consists in the minimization of a functional J ∈ R,
also called cost function depending on the design variables a and b defining the
shape within the admissible constants defining the admissible set X. We have a
direct calculation loop for the functional: from a parameterization (a, b) we define
a domain Ω(a, b) on which we compute the state equation solution W = (H, Q)
and the cost function J(Ω(a, b)):

J : x = (a, b) ∈ X −→ Ω(x) −→W (Ω(x)) −→ J(x,Ω(x),W (Ω(x)))

We consider that the shape of the structure is efficient if the associated energy
dissipation leads to a velocity of water close to a target velocity ~v related to fishes
species and minimizing the flow turbulence in the channel.
The target velocity is given by

−→v (x1, x2) =

{
(c, 0) if x2 ≤ 1

3 0.97

(0, 0) otherwise
(2.5)

Thus, we want to minimize the following cost function

J =
1

2

∫ T

0

∫
Ω

‖ −→u −−→v ‖2 dxdt+
α

2

∫ T

0

∫
Ω

| rot(−→u ) |2 dxdt (2.6)

with α ≥ 0 is the vorticity parameter, and −→u =

−→
Q

H
where (H,

−→
Q) is solution of the

shallow water system (2.1) with the initial and boundary conditions (2.2).
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3. Numerical resolution

The shallow water equations are a set of nonlinear hyperbolic equations. The
nonlinear character combined with the hyperbolic type of the equations can lead
to discontinuous solutions in finite time. In order to formulate simple and robust
numerical procedures, the two-dimensional shallow water equations (2.1) are cast
in conservation form with source terms

∂tU + ∂xF (U) + ∂yG(U) = S(U) (3.1)

where

U =

 H
Hu1

Hu2

 , F (U) =

 Hu1

Hu2
1 + 1

2gH
2

Hu1u2

 , G(U) =

 Hu2

Hu1u2

Hu2
2 + 1

2gH
2


and

S(U) =

 0
f1 + gH∂xη
f2 + gH∂yη


3.1. Finite volume method.

Finite volume schemes for the shallow water systems consist in using an upwind-
ing of the fluxes. The problem domain is first discretized into a set of triangular
cells Ti forming an unstructured computational mesh. Let ∆t be the constant time
step and define tn = n∆t for n = 0, ..., N . At each discrete time tn, we note Qni
the approximated flux value and Hn

i the approximated height value.

Denote by E(U) = (F (U), G(U)) the physical fluxes. By integrating the equa-
tion (3.1) on a triangle Ti, we obtain∫

Ti

Ut +

∫
Ti

∇.E(U) =

∫
Ti

S(U) (3.2)

We note ~ni the normal on the edges of triangle Ti. Using the divergence formula∫
Ti

∇.E(U) =

∫
∂Ti

E(U).nidΓ. The equation (3.2) takes the form∫
Ti

Ut +

∫
∂Ti

E(U).nidΓ =

∫
Ti

S(U) (3.3)

The term

∫
∂Ti

E(U).nidΓ can be calculated as∫
∂Ti

E(U).nidΓ =

3∑
j=1

Eij .nij .dlij

The equation (3.3) becomes

| Ti | Ut +

3∑
j=1

Eij .nij .dlij =| Ti | S (3.4)

where nij is the normal on the edge Ti/Tj , Eij are the discrete fluxes on the interface
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Ti/Tj and dlij is the length of the interface Ti/Tj .
Thus, we now have an equation for each cell i of the form

Ut = − 1

| Ti |

3∑
j=1

Eij .nij .dlij + S (3.5)

We make a finite difference approximation to the time derivative to obtain the
scheme

Un+1 = Un − dt

| Ti |
.

3∑
j=1

Eij .nij .dlij + dt.S (3.6)

Finding the value of the fluxes at the interface is of primary importance. A variety
of approximation techniques have been developed to allow efficient calculation of
the solution to the Riemann problem. The Roe solver is used to evaluate the term

3∑
j=1

Eij .nij .dlij .

3.2. A gradient free algorithm.

The design variables related to the shape Ω depend on the two positions of the slot
y = (a, b) = (y1, y2, y3, y4) (Figure 2). We redefine the objective function (2.6) in
the following way Φ1 : R4 → R where Φ1(y) = J(Ω(y)). The finite volume scheme

(3.6) yields, for each time tn, an approximated velocity −→u ni =

−→
Qni
Hn
i

which induces

an approximate objective function

Φ̄1(y) =
∆t

2

N∑
n=1

∑
e∈Ti

[

∫
e

‖ −→u ni −−→v ‖2 + α

∫
e

| curl(−→u ni ) |2] (3.7)

Finally, we collect all linear constraints (2.3) and (2.4) in a function
−→
φ 2: R4 → R10

−→
φ 2(y1, y2, y3, y4) =

(
1

4
1.213− y1,

1

4
1.213− y3, y1 −

3

4
1.21, y3 −

3

4
1.213, −y2,

−y4, y2 −
1

2
0.97, y4 −

1

2
0.97, 0.1− y3 + y1, 0.05− y2 + y4)

(3.8)

These constraints are satisfied if and only if
−→
φ 2(y) ≤ 0. The functional Φ̄1 can be

penalized to include geometric and state constraints

Φ(y) = Φ̄1(y) + β

10∑
j=1

max{(
−→
φ 2(y))j , 0} (3.9)

with β is a penalty parameter.

Due to the essentially geometric nature of the problem, we propose a direct search
technique for solving the discretized control problem. The NelderMead “simplex”
algorithm is one of the most widely used methods for nonlinear optimization. The
method attempts to minimize a scalar-valued nonlinear function using only func-
tion values, without any derivative information. The method constructs a sequence
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of simplices as approximations to an optimal point. To describe Nelder-Mead iter-
ations, we begin with an arbitrary simplex of 5 vertices y1, y2, ..., y5. We evaluate
and order our function on these vertices Φ(y1) ≤ Φ(y2) ≤ ... ≤ Φ(y5). The vertex
associated to the maximal value is replaced with a new point y(ν) = (1+ν)y∗−νy5,
where y∗ is the centroid of the convex hull {y1, ..., y4}. The value of ν is chosen
from this set of values: νδ = −0.5, νγ = 0.5, να = 1, νβ = 2. The choice of these
values is determined according to the following algorithm

Calculate and sort Φ(y1),Φ(y2), ...,Φ(y5)
While | Φ(y5)−Φ(y1) | is not sufficiently small, calculate y(νβ) and Φβ = Φ(y(νβ))
then

a) If Φβ ≤ Φ(y1) then calculate Φα = Φ(y(να)). If Φβ ≤ Φα, replace y5 with
y(να); otherwise replace y5 with y(νβ). Go to (f)

b) If Φ(y1) ≤ Φβ ≤ Φ(y4) then replace y5 with yβ and go to (f)

c) If Φ(y4) ≤ Φβ ≤ Φ(y5), then calculate φγ = Φ(y(νγ)). If Φγ ≤ Φβ replace
y5 with x(νγ) and go to (f). Otherwise go to (e)

d) if Φ(y5) ≤ Φβ then calculate φδ = Φ(y(νδ)). If Φδ ≤ Φy5 , replace y5 with
y(νδ) and go to (f). Otherwise go to (e)

e) For j = 2, ..., 5, set yj = y1 + 1
2 (yj − y1)

f) Resort values of Φ at each resulting vertex

To prevent stagnation at non-optimal point, a modification proposed by Kelley
[5] is used. This technique consists to replace the current simplex by a smaller one.

3.3. Numerical results.

Several numerical simulations for three pool geometries with different configu-
rations of baffles piers were conducted. All computations have been initialized
with a constant initial and boundary conditions. In particular, H0 == 0.5m,
Q0 = (0; 0)m2s−1, Q1 = −0.065/0.97 m2s−1, and H2 = 0.5 m. For the cost func-
tion, the target velocity is c = 0.8 m.s−1 with the vorticity parameter equals to

α = 0 and the penalty parameter β = 500. For the second member
−→
f , only the

bottom friction stress is carried out associated to Chezy coefficient of 57.36. The
focus of the present study is to deal with a fish passage associated to a comfortable
conditions, the geometric characteristics of the pool were d1 = 0.1 and d2 = 0.05.

3.3.1. Experiment 1.

For uniform flow conditions the flow pattern in vertical slot fishway depends mainly
on the specific pool design. The fishway under study is shown in Figure 2.
Only results related to the central pool are shown. For the initial random shape
Figure 3, we observe the recirculated flow near from the long baffle and the small
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one compared to the optimal shape Figure 3, the curved trajectory of velocity is
removed, and the velocity is close to the uniform target velocity v. The recirculation
region near from baffles is removed for the optimal points a = (0.5721, 0.1487) and
b = (0.8786, 0.0520).

Figure 3. Initial (left) and optimal (right) velocities for central pool

3.3.2. Experiment 2.

The second test consists in a similar form of fishway but the vertical baffles are
replaced by oblique baffles Figure 4.

Figure 4. Scheme of the first pool

The results show a large recirculation region between the crosswalls for the random
initial shape Figure 5.

Figure 5. Non Optimal Shape and corresponding velocity
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Figure 6. Optimal Shape and corresponding velocity

The optimal configuration shows a small swiriling zone in the slot region and far
away, the velocity is close to the uniform target velocity Figure 6. The optimal
points positions are a = (0.6170, 0.1477) and b = (0.8792, 0.0554).

3.3.3. Experiment 3.

The third test starts from a same rectangular form of fishway shown in Figure 1,
but the two vertical baffles are replaced by three vertical baffles Figure 7.

Figure 7. Scheme of the first pool

We consider the form of fishway depends now on the three points a(y1, y2), b(y3, y4)
and c(y5, y6). The comfort constraints are rewritten as

1

4
1.213 ≤ y1, y3, y5 ≤

3

4
1.213

0 ≤ y2, y4, y6 ≤
1

2
0.97

(3.10)

The stability constraints take the form

y3 − y1 ≥ d1 = 0.1

y2 − y4 ≥ d2 = 0.05

y1 − y5 ≥ d3 =
1

2
0.0305

y6 − y2 ≥ d4 =
1

2
0.0305

(3.11)
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Finally, the objective function conserves the same writing. We collect all sixteen

constraints defined in (3.10) and (3.11) in a function
−→
Φ 2 : R6 −→ R16

−→
φ 2(y1, y2, y3, y4, y5, y6) =

(
1

4
1.213− y1,

1

4
1.213− y3,

1

4
1.213− y5, y1 −

3

4
1.21,

y3 −
3

4
1.213 y5 −

3

4
1.213,−y2, −y4, −y6, y2 −

1

2
0.97,

y4 −
1

2
0.97, y6 −

1

2
0.97, 0.1− y3 + y1, 0.05− y2 + y4,

1

2
0.0305− y1 + y5,

1

2
0.0305 + y2 − y6)

(3.12)

The associated penalty function takes the form

Φ(y) = Φ̄1(y) + β

16∑
j=1

max{(~φ2(y))j , 0} (3.13)

For numerical simulations, the geometric parameters are d1 = 0.1, d2 = 0.05,

d3 =
1

2
0.0305, d4 =

1

2
0.0305. The obtained optimal position points are

a = (0.5521, 0.1581), b = (0.7770, 0.0818) and c = (0.3500, 0.2431).

Figure 8. Non Optimal Shape and corresponding velocity

Figure 9. Optimal Shape and corresponding velocity

We observe, in the optimal configuration, that the circulation areas disappear im-
proving the structure’s hydraulic performance.

4. Conclusion

Simulations of variant configurations provide a detailed flow patterns in vertical
slot fish ladder and allow to identify hydraulic issues and propose an appropriate
type of construction.
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The optimal shape design techniques combined with a robust total variation di-
minishing scheme for solving the state system can be considered as useful tools for
practical fishway design purpose.
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