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Résumé :
L’écoulement en rotation engendré par le fond tournant d’une cuve cylindrique fixe partiellement rem-
plie d’un liquide est étudié numériquement. Pour des vitesses de rotation élevées, la surface du liquide
se déforme fortement et des instabilités brisant la symétrie de révolution peuvent apparaître. L’étude
axisymétrique de l’écoulement, nous a permis de révéler sa structure qui est composée d’une colonne
centrale de fluide tournant à la même vitesse que le fond de la cuve et d’une zone périphérique qui
s’articule en quatre couches limites. Ces fines couches entourent un coeur où la vitesse de rotation est
quasi constante. Cela nous encourage à discuter la pertinence des modèles existants qui ont été utilisés
jusqu’à présent pour analyser les instabilités de cet écoulement.

Abstract :

We study the steady free-surface flow of a viscous liquid layer contained in a cylinder with a rotating
bottom and a fixed lateral wall. When the disk rotates at large speed, the free surface deforms strongly
and three-dimensional instability patterns (rotating polygons) or sloshing motions can arise. In order
to get some insight on their formation mechanisms, a study of the axisymmetric base flow is carried
out numerically. The flow structure consists of a well-known central fluid column entrained in a motion
of solid-body rotation at the disk angular velocity. The fluid region situated at the periphery reveals a
complex structure as it is found to be surrounded by four boundary layers. This leads us to discuss the
relevance of existing base-flow models used for instability studies of this flow configuration.
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Figure 1 – System and experimental setup.

Figure 2 – Polygonal instability patterns (first seen in [8], but illustrations come from [9]).

1 Introduction
Communities of geophysical and industrial flows have always found common interests in studying the
stability of rotating flows in academic configurations. A rotating disk at the bottom of a fixed cavity
partially filled with a fluid is a good example of such configurations. A typical setup is shown in figure 1.
In this context, numerous experimental studies have emerged since the early 1990s.

In an early work, Vatistas [8] found that polygons changing from ellipse to hexagon (see Figure 2) ap-
peared at the free surface depending on the angular velocity Ω of the disk and the initial liquid heightH .
These patterns rotate in the same direction as the disk but with a smaller angular velocity. Since then,
other experiments confirmed those results. For instance, the same phenomena were also observed by
another group of researchers in Danemark [4] as well as a group from Japan [6].

Several theories have been proposed to explain the azimuthal symmetry breaking. The formation of the
polygons was related to point vorticies by Vatistas et al. in [9]. However, Bergmann et al. [1], measured
the rotation velocities of each vortices and revealed that the power of point vortices is too weak to
acquire the observed rotating speed of the entire pattern. Tophøj et al. [7] explained the rotating polygonal
instability as a result of gravity waves and centrifugal waves’s interaction (thanks to a linear stability
analysis on a potential vortex flow). Fabre and Mougel [2] extended this work to a more general case
with a Rankine vortex model as a baseflow.

The aim of the present work is to get a better understanding of the structure of the baseflow with the
help of numerical axisymmetric simulations. This may serve in the future as a basis for linear stability
analysis.

2 Flow parameters and numerical method
The system is presented in figure 1. It consists of a layer of liquid of density ρl and kinematic viscosity ν,
placed in a cylindrical container of radiusR, over a disk of the same radius rotating at angular velocityΩ.
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The surface tension at the interface of air-liquid is denoted as σ and the gravity acceleration as g. All
length, velocity, density and pressure variables are respectively non-dimensionalized by R, RΩ, ρl and
ρlR

2Ω2.

Relative to the liquids considered here (water), the dynamic viscosity of air is such that µair/µl ∼ 2.10−2

and its density such that ρair/ρl ∼ 10−3. This allows us to neglect the tangential stress exerted by the air
on liquid surface and the pressure variations in the air. As a consequence, the dynamics of the air phase
is not taken into account in this study. Following non-dimensional parameters can be constructed :

Re =
R2Ω

ν
, Fr =

RΩ2

g
, We =

ρlΩ
2R3

σ
, a =

H

R
. (1)

The shape of the interface can be substantially modified by the surface tension, but this is true only
at low Weber number values (lower than several hundreds). In most experiments, the Weber number is
always larger than 1000 and is no longer a relevant parameter of the problem. In what follows, the Weber
number is thus kept constant atWe = 1236.6 as in the experiment of Bergmann (as explained below)
and we focus on the influence of the Reynolds number and the Froude number on the flow.

The computations are carried out by a code named ROSE which is developed in our group to compute
steady axisymmetric flows efficiently using a Newton-Raphson procedure. The stationary Navier–Stokes
equations are written in streamfunction-vorticity formulation. The code uses curvilinear grid to adapt to
the deformed interface and second-order spatial discretization. Only the liquid phase is computed. The
method is described in [5] and we found that taking into account the surface tension was very helpful in
stabilizing the iterative process.

3 Results

3.1 Flow structure
We present the typical flow structure on a reference case (figure 12 of Ref. [1]). To our knowledge,
it is the only experiment with quantitative measurement of flow velocity. It is unfortunately restricted
to measures obtained on the free surface. The experimental parameters are H/R = 0.1856, Fr =

0.2464, We = 1236.6 and Reynolds number Re = 132 860. The computations are carried out at
much lower values of Reynolds number (up to Re = 20000) but we claimed that most of the structure
for high Reynolds number values is revealed. Isocontours of the streamfunction and azimuthal velocity
component are shown in figure 3 left. The central part of the liquid is in solid-body rotation at the disk
angular velocity, while at the periphery the angular velocity decreases and a recirculating region occurs,
best seen in a meridional plane.

We characterize the length L of the peripheral region as the radial distance between the point of maxi-
mum azimuthal velocity along the free surface at r = rmax and the side wall : L = R − rmax (see
figure 3 right). For this large Reynolds number values, this region is seen to be delineated by four boun-
dary layers : one at the disk, one along the end wall, one at the free surface, and one along the central
part in body rotation.

The flow structure at steady state is schematically represented in figure 4. The free surface height at
steady state is denoted by h(r). Quantities h0 = h(0) and h1 = h(1) are introduced. The characteriza-
tion of the four boundary layers will be addressed further.
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Figure 3 – Left : Contours of the streamfunction ψ (top left) and azimuthal velocity component Vθ
(bottom left) for H/R = 0.1856, Fr = 0.2464 and Re = 20 000. For ψ, 20 equally spaced contours
between 0 and ψmax = 0.0024 as well as 2 equally spaced dashed contours between ψmin = −1.485 ×
10−4 and 0 are used. For Vθ, 20 contours are equally spaced between 0 and 1. Right : azimuthal velocity
component at the free surface Vθs as a function of r and definition of several positions.
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Figure 4 – Sketch of the flow in a meridional plane. The fluid follows the disk at the same rotation
rate (solid body rotation) in the central part (left of the gray band). A meridional recirculation with four
boundary layers is present at the periphery.

3.2 Effects of Reynolds number
First, we investigate the effects of the Reynolds number on the flow structure. Here, a small constant
Froude number Fr = 0.01 is taken. We show in the following section that, apart from deforming the
free surface, increasing the Froude number does not change significantly the flow structure. To clarify
the relation between the length L and the Reynolds number, steady simulations for a series of Reynolds
numbers from 10 and 20 000 was conducted. It is seen in figure 5 that L(Re) has a three stage evolution.
L increases abruptly almost linearly for 100 ≤ Re ≤ 700 (regime 1), is then roughly constant on a short
range up to Re ≈ 1600 (regime 2). It then smoothly increases and saturates at a slightly higher level
(regime 3).

We chose three Reynolds numbers, Re = 300, 1200, 10 000, located respectively in each of the above
regimes. Figure 6 gives the corresponding profiles of the azimuthal velocity component Vθ as a function
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Figure 5 – Evolution of the size L of the per-
ipheral region as a function of Re. Fr = 0.01,
H/R = 0.1856
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Figure 6 – Typical profiles of Vθs as a function
of r for each regime.

of r along the free surface. The three velocity profiles are virtually indistinguishable for a radius smaller
than 0.4. They are superimposed with the curve Vθ = r so that all the regimes behave identically in
the inner part : a solid-body rotating at the angular speed of the disk. The main differences between the
regimes are in the peripheral region. If L is considered to start from one point in the region of solid-
body rotation, its value would likely be almost constant in figure 5. The definition based on the maximum
azimuthal velocity, always underestimates the length of the outer region but it makes the different regimes
more obvious in figure 5. The blue curve 1 corresponding to Re = 300 illustrates a regime with a
moderate convective flow. The red curve 2, at Re = 1200, is in the regime of appearance of boundary
layers. The gray curve 3, for Re = 10 000, is characteristic of the observed overshoot in the azimuthal
velocity for large Reynolds values. A more complete understanding of the regimes is also provided by
taking a close examination of the isocontours of streamfunction and azimuthal velocity component in
figure 7. The density of the contours which are linearly spaced gives insight on the boundary layers’
formation. Finally, the radial profile of Vz at z = h0/2 and the axial profile of rVr at r = rmid which
are plotted in figure 8 are also helpful in the analysis. The radius rmid at which the profiles are plotted
is rmid = rmax + L/2.

The transition between these different regimes can be explained as follow. For very low values of Rey-
nolds number, the flow is entirely dominated by viscous effects. The equation for the azimuthal com-
ponent of velocity reduces to a purely diffusive equation without source term and with a non homoge-
neous boundary condition on the disk. The azimuthal velocity is of the order of magnitude the velocity
of the disk. The meridional velocities (radial and axial components) are also purely diffusive having only
homogeneous boundary condition. They are driven by the only source term which is the axial variation
of the azimuthal velocity. Meridional components are weak compared to the azimuthal one. Indeed, the
maximum value of the streamfunction scales as α ·Re with α ≈ 10−5

This viscous regime is barely visible in figure 5. One can only observe at the beginning of regime 1

a very small plateau as Re tends to zero. Removing all convective terms in our solver leads to find
L = 0.29 which is the starting point of regime 1. As the value of the Reynolds number increases, the
meridional flow strengthens but continues to scale linearly with Re up to Re ≈ 300. Along the free
surface, the negative radial velocity convects low azimuthal velocity from the periphery toward the axis.
It has the effect of weakening the azimuthal velocity and thus L increases. Progressively, the meridional
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flow interacts with the azimuthal velocity and modifies its own source term.

As the Reynolds number increases, one could expect that the meridional flow expands and eventually
reaches the axis. However, the convection is damped by forces that prevent motion perpendicular to the
rotation axis (this is related to Taylor-Proudman theorem). Along the free surface, as r decreases, the
radial velocity is forced to decrease to zero as it reaches the central region. The flow by continuity turns
to be mainly axial. Thus L results from an equilibrium between these two phenomena and reaches again
a plateau.

L increases again at the beginning of the third regime. This is due to the effect of conservation of angular
momentum that is responsible for the overshoot observed in figure 6. In this higher Reynolds regime,
dissipation is quite weak especially far from any walls so that one can consider to some extent that
rVθs = cte which is true in the inviscid limit. The maximum is again shifted toward the axis by this
effect, which causes L to increase.
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Figure 7 – Contours of the streamfunction (left) and azimuthal velocity component (right) for Fr =
0.01, Re = 300, 1200, 10000 from top to bottom. 20 equally spaced solid contours between 0
and ψmax = (0.00355, 0.0074, 0.00345) and 2 equally spaced dashed contours between ψmin =
(0, 0,−1.996 × 10−4) and 0 ; Vθ is positive, with 20 equally spaced contours between 0 and 1.

To quantify the boundary layers, we have defined the following length scales :
— δbottom, the distance between the maximal rVr position (circle symbols in Fig 8 right) and the

disk at r = rmid ;
— δwall, the distance between the maximal Vz position (square symbols in the Fig 8 left) and the

side wall at z = h0/2 ;
— δtop, the distance between the interface and the inflexion point of the rVr profile (’+’ symbols in

Fig 8 right) at r = rmid.
— δcore, the distance between rmax and the minimal Vz position (’*’ symbol in Fig 8 left) at z =

h0/2.
The influence of Reynolds number on the thickness of the boundary layers is shown in figure 9. The
thickness of the boundary layers, except that of the core, undergo similar tendency : a plateau before
Re = 300 and a decrease afterwards. If the scaling of each boundary layer thickness is far from being
clear and understood, it is quite satisfactory that the beginning of regime 2 is corroborated by these plots.
It must be noted that the definitions of δ are questionable, especially for δcore as it is a layer not directly
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Figure 8 – Fr = 0.01. Left : axial velocity component Vz as a function of r at z = h0/2 ; Right : rVr
as a function of z at r = rmid.

related to a frontier of the fluid. Its behaviour is presented for the sake of completeness but it is likely
that a different criterium has to be found.
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Figure 9 – Dependency of boundary layers thickness on the Reynolds number for H/R = 0.1856,
Fr = 0.01.

3.3 Effects of Froude number at large Reynolds number
In order to study the effects of Froude number, we compare three different Froude number values :
Fr = 0.01, 0.2464, 1.0 while keeping other parameters constant :Re = 10000,We = 1236.6,H/R =

0.1856. According to figure 10 (left) and without surprise, the first effect of increasing the value of
Froude number is to strongly modify the shape of the free surface. For Fr = 1, h0 is yet close to 0.
This effect is expected as the Froude number measures the competition between centrifugal and gravity
acceleration. Less obvious is the fact that the flow structure is almost the same for all Froude numbers
even though the free surface shape was strongly modified. The central region with solid body rotation
extend over the same radius. The vortex breakdown [3] attached to the interface are weakened but their
location is barely changed.

This similarity in the flow structure becomes even more evident when the velocity profiles are superim-
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posed. In figure 10 (right), the axial coordinate is normalized. The profile for the velocity component Vθ
and rVr are plotted as a function of z/h0.8 at r = 0.8 where h0.8 = h(r = 0.8) is the interface height at
r = 0.8. These profiles also illustrate the effect of Taylor-Proudman theorem. An almost z-independent
region where the meridional flow is extremely weak and Vθ reaches a constant value. This region is
surrounded by two boundary layers, one above the disk and the other under the free surface.
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Figure 10 – Re = 10000, H/R = 0.1856,We = 1263.6, Fr = 0.01, 0.2464, 1.0 from top
to bottom. Left : 20 equally spaced solid contours of stream function between 0 and ψmax =
(0.0035, 0.0035, 0.0035) and 2 equally spaced dashed contours between ψmin = (−1.996 ×
10−4,−1.979 × 10−4,−1.836 × 10−4) and 0 ; Right : Vθ and rVr profiles as functions of z/h0.8 at
r = 0.8.

4 Conclusion
This study is a first step toward a better understanding of the complex flow generated by a rotating disk
at the bottom of fixed cavity partially filled with liquid. For moderate Reynolds number, many of the
features of the flow is explained and are almost straightforward to understand. For high Reynolds number,
we have shown the structure of the flow with a central region in solid body rotation and a peripheral
region holding a z-independent core surrounded by four boundary layers. This structure is independent
of the Froude number or in other words independent of the shape of the free surface. However, the scaling
of the boundary layers remains unclear. A good comprehension of this regime is a necessary step as it
will allow us to improve the baseflow model that have been proposed up to now and give more insight
to the instability mechanisms of the azimuthal symmetry breaking observed in experiments.

Our computations can be compared to the experiment of Bergmann et al. (fig. 12 in [1]) in the following
way. The shape of the free surface, even if there is no real quantitative values besides a picture, is in fair
agreement. There is also a good agreement on the radius of the central region and as corollary a perfect
agreement on the azimuthal velocity (solid body rotation). However, the overshoot of Vθs due to the
conservation of angular momentum is not observed experimentally and Vθs close to the wall also differs.
We believe that the region close to the wall is likely to be difficult to be measured precisely in the
experiment but the overshoot should be captured easily. A possible explanation is that a flow instability
(not necessarily strong enough to modify the free surface shape) redistribute the angular momentum
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through a three dimensional mechanism. Our present computation is not able to capture this mechanism.
This point is under investigation.
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