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Résumé :

L’interaction entre une onde de choc et une bulle ainsi que le dévelopement de l’instabilité de Richtmyer-

Meshkov sont simulés à l’aide d’une méthode numérique explicite d’ordre élevé. Les simulations sont

réalisées en résolvant les équations de Navier-Stokes complétées de deux équations d’advection gou-

vernant l’interface entre deux fluides. L’équation d’état raidie est utilisée afin de relier la pression à

l’énergie totale d’un liquide ou d’un gaz. Deux écoulements diphasiques sont simulés en deux dimen-

sions. Le premier concerne le développement d’une instabilité de Richtmyer-Meshkov suite au passage

d’une onde de choc à travers l’interface entre de l’air et de l’hexafluorure de soufre (SF6). L’influence

du raffinement du maillage sur la forme de l’instabilité est étudiée. Le second problème porte sur l’in-

teraction d’une onde de choc plane et d’une bulle cylindrique contenant de l’hélium ou du chlorodi-

fluorométhane (R22). Un diagramme spatio-temporel représente les positions des différentes ondes de

pression créées au contact entre l’onde de choc et l’interface. Les résultats numériques obtenus pour les

deux écoulements sont en accords avec les données et visualisations expérimentales.

Abstract :

Viscous simulations of shock-bubble interaction and Richtmyer-Meshkov instability are performed using

an explicit high-order computational method. The simulations are performed by solving the Navier-

Stokes equations associated with two convection equations governing the interface between two fluids.

The stiffened equation of state is used to relate the pressure to the total energy of a liquid or a gas.

Two-dimensional two-phase flows are considered. The first flow concerns the Richtmyer-Meshkov insta-

bility developed on a post-shocked interface between air and sulphur hexafluoride (SF6). The influence

of the grid refinement on the instability shape is studied. The second problem deals with a shock wave

propagating in air and hitting a cylindrical bubble filled with helium or chlorodifluoromethane (R22).

A spatial-time diagram represents the locations of the various pressure waves generated from the in-

teraction between the shock wave and the interface. For both simulations, the numerical results are in

agreement with experimental data and visualizations.
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1 Introduction

Two-phase flows are encountered in many applications such as gas engine injection or cavitation phe-

nomena. They present an interface between two fluids, which can be deformed by the propagation of

pressure waves. In the present study, a computational method is used to simulate the interaction between

interfaces and pressure waves including viscous effects [4]. Two-dimensional two-phase flows are consi-

dered. The first one contains a perturbed interface between air and SF6 which is impacted by a plane

shock wave [6]. This shock-interface interaction leads to the generation of the Richtmyer-Meshkov insta-

bility providing a mushroom shape interface. The influence of grid refinement is shown on the instability

shape and then on the temporal evolution of the width of the mushroom stem. The second flow consi-

dered in this work contains a plane shock wave propagating in air and impacting a cylindrical bubble

filled with helium or R22 [5]. The locations of the various pressure waves and of the interface are plotted

against time and compared with experimental data.

The present paper is organized as follows. The governing equations and the numerical methods are briefly

detailed in Section 2. The results obtained for the two-dimensional flows are presented in Section 3.

Concluding remarks and perspectives are finally provided in Section 4

2 Governing equations and numerical methods

In order to simulate compressible and viscous two-phase flows, the conservative Navier-Stokes equations

associated with two advection equations governing the interface are solved [1, 9]. They are written as :
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where ρ is the density, ui is the velocity component in the i-direction, E is the total energy and p is the

pressure. The stress tensor σij is for a compressible Newtonian fluid and the thermal conductivity vector

qi is computed from the Fourier’s law.

In order to relate the pressure to the total energy of a liquid or a gas, the stiffened equation of state is

used [7]. It is expressed as :
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1
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2
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(2)

where γ and B are characteristic constant of each fluid.

In order to solve these equations, an explicit fourth-order finite difference scheme is used for spatial

discretization [2]. It is centered over eleven points and has been designed to minimize the numerical

dispersion error. Concerning time advancement, a six-stage Runge-Kutta algorithm is employed [2]. A

sixth-order spatial selective filter is applied at each time step to remove grid-to-grid oscillations without
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significantly impacting the high wavelengths. A discontinuity capturing methodology is used to capture

shock waves and deformable fluid/fluid interfaces which can be encountered within compressible two-

phase flows [3, 4].

3 2D Simulations

3.1 Richtmyer-Meshkov instability

The first case considered in this study concerns the Richtmyer-Meshkov instability generated on a post-

shocked interface between air and sulphur hexafluoride (SF6). This flow has been experimentally inves-

tigated by Jacobs and Krivets [6]. Initially, the two gases are stationary in a vertical shock tube. Then

the shock tube is horizontally shaken in order to perturb the interface. Finally, a shock wave propagating

in air with a Mach number M = 1.29, impacts the perturbed interface. These experimental conditions

are used to set the parameters of the simulation. Initially, the shock is located at the abscissa xs and the

position of the interface xint is described using a cosine profile with a wavelength λ = 59 mm and an

amplitude a = 2.9 mm. Experimentally, the distance between the two walls of the shock tube is larger

than the perturbation wavelength. Consequently, multiple instabilities develop on the interface. In the

simulation, only one instability is generated using periodic boundary conditions spaced by one wave-

length λ. Radiation conditions are imposed at the upstream and downstream extremities of the domain.

The initial conditions for the density, the axial velocity, the pressure and the variables γ and B are the

following :

(ρ, ux, p, γ,B) =











(2.2997, 136, 178670, 1.27, 0) for x ≤ xs

(1.4933, 0, 101325, 1.27, 0) for xs < x ≤ xint

(6.0156, 0, 101325, 1.0984, 0) for x > xint

Five uniform grids have been considered. They contain 64, 128, 256, 512 and 1024 mesh cells in the

y-direction which is normal to the walls, and are denoted by ny64, ny128, ny256, ny512 and ny1024,

respectively. The Courant-Friedrich-Lewy number based on the speed of sound in air, is set to CFL =

0.9.

The results obtained at time t = 5.86 ms after the contact between the shock and the interface are

presented in the Figure 1. The experimental visualization is in the first column. The numerical density

fields presented in the three next columns are obtained on the meshes ny128, ny256 and ny512. The air

density is in gray and the SF6 density is in black. The Richtmyer-Meshkov instability results in a finger

of SF6 which penetrates the air. This finger grows and leads to a mushroom shape interface. The shape of

the instability is well predicted by the three simulations. However, the small scales in the mixing zones

at the left-hand side and right-hand side of the mushroom stem are better resolved on the mesh ny512.

The temporal evolution of the width of the stem W , estimated at the half distance between the bottom

and the top of the mushroom, is represented in the Figure 2. As the instability grows, the mushroom

stem becomes longer and thinner. Therefore, the width of the stem decreases. Negligible differences are

observed between the solutions estimated on the two finest meshes ny512 and ny1024. Consequently,

the simulation computed on the mesh ny512 is converged with respect to the grid.



23ème Congrès Français de Mécanique Lille, 28 au 1er Septembre 2017

Experiment ny128 ny256 ny512

Figure 1 – Richtmyer-Meshkov instability on the air-SF6 interface at time t = 5.86 ms, with respect to

the experimental conditions stated in the main text. The experimental visualisation from [6] is presented

in the first column. The density fields are obtained using the meshes ny128 in the second column, ny256

in the third column and ny512 in the fourth column.
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Figure 2 – Temporal evolution of the width of the stem W estimated at the half-distance between the

top and the bottom of the mushroom, using the meshes ny64, ny128, ny256, ny512

and ny1024.

3.2 Shock-bubble interaction

The second two-phase flow considered in this study is taken from the experiments of Haas and Sturtevant

[5]. It consists of a cylindrical bubble of diameter D = 5 cm hit by a plane shock wave propagating in

air with a Mach number M = 1.22. Initially, the shock is located at abscissa xs and propagates from the

right to the left of the domain along the horizontal direction x. The walls of the shock tube are spaced

by 89 mm and the bubble is centered on the vertical axis y. Two simulations are performed. In the first

case the bubble is filled with helium, which is lighter than air, and in the second case it is filled with

chlorodifluoromethane (R22), which is heavier than air. The initial conditions for the density, the axial

velocity, the pressure and the variables γ and B are :

(ρ, ux, p, γ,B) =



















(1.664,−114, 159059.98, 1.4, 0) for x > xs

(1.2098, 0, 101325, 1.4, 0) in air, for x ≤ xs

(0.2204, 0, 101325, 1.6451, 0) inside the helium bubble

(3.374, 0, 101325, 1.1847, 0) inside the R22 bubble
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The simulations are carried out on a uniform mesh containing 2.9× 106 cells with a grid spacing equal

to ∆x/D = 2.5× 10−3. The CFL number is set to 0.9 and is estimated from the highest speed of sound

encountered within the flow. Periodic boundary conditions are used to model the walls of the shock

tube, and radiations conditions are imposed at the upstream and downstream extremities of the domain.

The results obtained for both cases are presented in the Figure 3. The experimental shadow-photographs

[5] are in the lower-half picture and the numerical Schlieren pictures are in the upper-half picture. The

dashed circle indicates the initial position of the bubble. The solutions obtained for the helium bubble

at time t = 245 µs are presented in the Figure 3(a). The bubble is advected downstream after the impact

of the shock wave. The upstream interface penetrates the bubble leading to a kidney-shaped interface.

A vorticity field rotating clockwise in the upper-half domain and couterclockwise in the lower-half is

generated. The results obtained for the R22 bubble at time t = 247 µs are presented in the Figure 3(b).

The upstream interface, located at the center of the dashed circle is advected downstream and is almost

not deformed. The downstream interface, located at the left of the dashed circle, present a spike on the

axis of symmetry. This bubble shape is due to the vorticity field which is reversed from the previous

case with the helium bubble. For both cases, the numerical results are in agreement with experimental

visualizations. The various transmitted, refracted and reflected pressure waves are correctly propagated

and the interface deformations are well predicted by the simulation.

(a) (b)

Figure 3 – Numerical Schlieren pictures (upper-half picture) and experimental shadow-photographs (lower-half

picture) [5] obtained (a) with a helium bubble at time t = 245 µs and (b) with a R22 bubble at time t = 247 µs.

In Figure 4, the locations of the pressure waves and of the R22 bubble interfaces are plotted against

time. The positions of the upstream and downstream interfaces are in dashed lines. The locations of the

refracted and transmitted waves are represented by a gray solid line and by black dashed and dotted lines,

respectively. They are computed on the bubble axis of symmetry. The incident shock wave positions

(black solid line) are estimated on the horizontal axis at half-distance between the top of the bubble and

the upper wall. The black circles represent the experimental data of Haas and Sturtevant [5]. After the

impact between the incident shock wave and the upstream part of the interface at time t = 0, the interface

is advected downstream and a refracted wave is generated, and propagates inside the bubble. Then, the

refracted wave impacts the downstream part of the interface at x = 50 mm and at time t = 194 µs. This

interface is advected downstream and a pressure wave is transmitted outside the bubble. The numerical

results are in agreement with the experimental data. The positions, and the speeds of the various pressure

waves and of the interfaces are well predicted by the simulation.

4 Concluding remarks

Two-dimensional viscous and compressible flows are simulated using an explicit high-order compu-

tational method which consists in solving the Navier-Stokes equations associated with two advection
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Figure 4 – Space-time diagram of the interaction of a plane shock wave at Mach M = 1.22 with an

R22 cylindrical bubble. Locations of the incident shock wave, refracted wave, . .transmitted

wave upstream interface and downstream interface ; bc experimental data [5]

equations governing the interface. Firstly, a simulation of the Richtmyer-Meshkov instability between

air and SF6 is performed. The interface initially perturbed is deformed by the interaction with the shock

wave, providing a mushroom shape. The influence of grid refinement is shown on the on the instability

shape and on the temporal evolution of the width of the mushroom stem. The grid spacing of the mesh

ny512 is sufficiently fine to accurately solve this flow. Secondly, the interaction between a shock wave

and a cylindrical bubble filled with helium or R22 is considered. In both simulations, the numerical

results are in agreement with experimental data. The interaction of the pressure waves with the inter-

face are well resolved leading to accurate deformations of the interface. The numerical method correctly

propagates the various pressure waves, such as reflected, refracted and transmitted waves which are ge-

nerated at the contact with the interface. In further studies, a spherical collapsing bubble filled with air

and surrounded by water will be considered [8].
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