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Abstract

The inference of dynamical systems is a challenging issue, particularly when the dynamics include com-
plex phenomena such as the existence of bifurcations and/or chaos. In this situation, the likelihood
function formulated based on time-series data may be complex with several local minima and as a re-
sult not suitable for parameter inference. In the most challenging scenarios, the likelihood function
may not be available in an analytical form, so a standard statistical inference is impossible to carry
out. To overcome this problem, the inclusion of new features/invariants less sensitive to small variations
from either the time or frequency domains seems to be potentially a very useful way to make Bayesian
inference. The use of approximate Bayesian computation (ABC) or likelihood-free algorithms is an ap-
propriate option as they offer the flexibility to use different metrics for parameter inference. However,
most variants of the ABC algorithm are inefficient due to the low acceptance rate. In this contribution,
a new ABC algorithm based on an ellipsoidal nested sampling technique is proposed to overcome this
issue. It will be shown that the new algorithm performs perfectly well and maintains a relatively high
acceptance rate through the iterative inference process. In addition to parameter estimation, the new al-
gorithm allows one to deal with the model selection issue. To demonstrate its efficiency and robustness,
a numerical example is presented.

Keywords: Approximate Bayesian computation, ellipsoidal sampling, system
identification, model selection, Duffing oscillator

1 Introduction
Model selection and parameter estimation still remain challenging issues for dynamicists, particularly for
chaotic systemswhen small perturbations could cause significant changes in the system response. As can
be seen in literature, in parameter estimation, the Bayesian approach has been widely used for linear and
non-linear dynamical systems. Compared with the optimisation techniques (gradient-based methods,
evolutionary algorithms, etc) which have been widely applied in the past, the Bayesian approach is more
informative in the sense that one could get the full distributions of the unknown parameters. Moreover,
the Bayesian method is very well suited for model selection. For more details about the implementation
of the Bayesian method for parameter estimation andmodel selection, the reader is referred to [1, 2, 3, 4].
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The application of the Bayesian approach requires the definition of a likelihood function to measure
the level of agreement between the observed and simulated data. However, in some circumstances the
likelihood function might not be available in a closed form. To overcome this issue and make possi-
ble the inference of complex systems, approximate Bayesian computation (ABC) has been introduced.
ABC offers the possibility of using different kinds of metric to measure the similarity between simulated
and observed data to infer the system. Therefore, it has attracted attention in a wide variety of applied
disciplines (e.g., biology, psychology, genetics to mention a few [5, 6]) and recently in structural dynam-
ics [7, 8]. Several variants of the ABC algorithm have been proposed in the literature, including ABC
based on Markov chain Monte Carlo sampling [9] and ABC based on sequential Monte Carlo (proposed
by Sisson et al. [10]), which has proven to be more efficient than [9]. It should be noted that ABC
was introduced initially to infer model parameters and then was extended to deal with model selection.
One common issue with the existing ABC algorithms is that the acceptance rate dramatically decreases
along the iterations, which exponentially increases the computational requirements. In this paper, a new
ABC algorithm based on the idea of a nested ellipsoidal sampling technique [11] is proposed; it has been
named ABC-NS. In the proposed algorithm, instead of removing one particle, as in the traditional nested
sampling algorithm [12], a proportion of particles are removed in each iteration (called the population in
the ABC jargon) based on assigned weights. In this study, two numerical examples have been proposed
to demonstrate the efficiency and robustness of the new algorithm. The first example is focused on the
parameter estimation of a chaotic system. Then, the application of the algorithm is extended to model
selection.

The rest of this paper is structured as follows. Section 2 provides a summary of likelihood-free Bayesian
algorithms and gives details of the ABC-NS algorithm and its implementation. Two numerical examples
are then given in Section 3 to illustrate the main results and the efficiency of the proposed algorithm.
Finally, conclusions are given in Section 4.

2 Approximate Bayesian computation

2.1 Basic theory
In the Bayesian method, the posterior probability density, p(θθθ|D) given observed data D and a model
M, can be computed using Bayes’ Theorem:

p(θθθ|D) =
p(θθθ)L(D|θθθ)∫

θθθ p(θθθ)L(D|θθθ)dθθθ
∝ p(θθθ)L(D|θθθ) (1)

where p(θθθ) is the prior probability of θθθ and L(D|θθθ) is the likelihood function.

However, as mentioned earlier, explicit forms for likelihood functions are rarely available. The ABC
methods approximate the likelihood through evaluating the discrepancy between the observed data and
the data generated by a simulation using a given model, yielding an appoximate form of the Bayes’
Theorem:

p(θθθ|∆(D,Ds) < ε1) ∝ p (∆(D,Ds) < ε1|θθθ) p(θθθ) (2)

whereDs ∼ f(D|θθθ) is the simulated data, ∆ is a discrepancymetric, and ε1 > 0 is a tolerance threshold.

The most simple implementation of ABC is ABC rejection sampling (RS) as illustrated in Algorithm
1. While ABC-RS is simple to implement, it can be computationally prohibitive in practice. In the next
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section, the new ABC algorithm is presented. It should be noted that in the ABC algorithms in general,
the identification strategy starts at a coarse resolution (higher initial ε1 value), which then is adaptively
refined, giving a gradually finer representation of the model parameters.

Algorithm 1 ABC-RS
Require: D: observed data,M: model, ε1
1: while i ≤ N do
2: repeat
3: generate θ∗ from the prior distribution π(·)
4: simulate Ds using the modelM(·)
5: until ∆(Ds,D) < ε1
6: set θθθ = θ∗

7: end for

2.2 ABC-NS implementation
In this section, a brief description of the ABC-NS implementation is given, the ABC-NS algorithm
broadly works following the same scheme as the ABC-SMC algorithm in [13]. The main novelties are
in (i) the way of sampling, (ii) the weighting technique adopted from [5] and (iii) instead of dropping
one particle per iteration, a proportion of particles is dropped, which speeds-up the algorithm without
compromising the precision on the posterior estimates. The iterative process is detailed in Algorithm 2.
The algorithm starts by generating N particles from the prior satisfying the constraint ∆(u, u∗) < ε1

(here, u for observed data and u∗ for simulated data). The accepted particles are then weighted (see,
Step 9, Algorithm 2) and the next tolerance threshold is defined based on discrepancy values ranked
in descending order (highest on top, see, step 11) as the (α0N)th value where α0 is the proportion of
dropped particles defined by the user. Then, one assigns a weight of zero to the dropped particles.
After that, the weights of the remaining particles are normalised. From the remaining particles, so-
called “alive” particles, one selects β0N particles based on the updated weight values. The remaining
particles are then enclosed in an ellipsoid in which the mass center µ1 and covariance matrix C1 are
estimated based on those particles; denote this ellipsoid by E1 = (µ1, C1). It should be noted that
the generated ellipsoid could be enlarged by a factor f0 to ensure that the particles on the borders are
inside (in a similar fashion with minimum volume enclosed ellipsoid method). Ellipsoidal sampling
was firstly proposed in [11] to improve the efficiency of the nested sampling algorithm which has been
widely used for Bayesian inference, mainly in cosmology [14]. Finally, the population is replenished by
resampling (1−β0)N particles inside the enlarged ellipsoid [14] and a re-weighting step is carried out.
The procedure is repeated until a stopping criterion defined by the user is met.

In the considered examples, the number of samples is set to 1000, α0, β0 and f0 are set to 0.3, 0.6
and 1.1, respectively. In the examples, these tuning parameters work quite well to maintain relatively
high acceptance rates and they work well for the considered examples. Of course, more investigations
are required to select the optimum hyperparameters defined below, this is outside the scope of this study.
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Algorithm 2 ABC-NS SAMPLER
Require: u: observed data,M(·): model, ε1, N , α0, β0, f0
1: set t = 1
2: for i = 1, . . . , N do
3: repeat
4: Sample θ∗ from the prior distributions π(·)
5: Simulate u∗ using the modelM(·)
6: until ∆(u, u∗) < ε1
7: set Θi = θ∗, ei = ∆(u, u∗)
8: end for
9: Associate a weight to each particle: ωi ∝ 1

ε1

(
1− ( eiε1 )2

)
10: Sort ei in descending order and store them in et.
11: Define the next tolerance threshold ε2 = et(α0N)
12: Drop particles with ∆(u, u∗) ≥ ε2, ωj=1:α0N = 0

13: Normalise the weights such that
(1−α0)N∑
i=1

ωi = 1

14: Select At = β0N particles from the remaining based on the weights
15: Define the ellipsoid by its centre of the mass and covariance matrix Et = {µt, Ct}
16: Enlarge the ellispoid by f0 . For simplicity the same notation for the updated ellipsoid is kept
17: for t = 2, . . . , T do
18: for j = 1, . . . , (1− β0)N do
19: repeat
20: Sample one particle θ∗ inside Et−1
21: Simulate u∗ using the modelM(·)
22: until ∆(u, u∗) < εt
23: set Θj = θ∗, ej = ∆(u, u∗)
24: end for
25: Store the new particles in St
26: Obtain the new particle set, Nnew = [At−1;St] with their correspondent distance values et
27: Sort et and define εt+1 = et(α0N)
28: Associate a weight to each particle as in step (9)
29: Define the new set of selected particles At as in step (14)
30: Update the ellipsoid hyperparameters using At, Et = {µt, Ct} . The enlargement factor is

kept constant
31: end for
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3 Numerical examples

3.1 Parameter estimation of the Duffing oscillator using ABC-NS
In this example, one is interested in the identification of a Duffing oscillator without linear stiffness given
by:

z̈ + cż + k3z
3 = f(t) (3)

where c is the damping coefficient, k3 is the nonlinear stiffness and f(t) is a Gaussian input force with
mean zero and standard deviation of 10.

Denote by z0 the initial conditions (z(0) = 3, ż(0) = 4), the system is sensitive to small variations that
may affect the initial conditions. If one changes the initial conditions only by 0.1% (z′0 = [3.003, 4.004]),
the trajectories of the displacement diverge from each other as can be seen in Fig. 1. For simplicity, the
initial conditions are denoted by z0 = (ξ0, ξ1) = [3, 4]. The training data were synthetically generated
by integrating numerically the above equation using the fourth-fifth order Runge-Kutta method.

Through this example, one aims to investigate the potential of the ABC-NS algorithm to deal with
complex scenarios by choosing a suitable feature and a corresponding metric to carry out Bayesian
inference.
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Figure 1: Comparison between the Duffing oscillator responses using the true and perturbed initial
conditions.

One is interested now in implementing ABC-NS to infer model parameters and the initial conditions.
Table 1 summarises the unknown parameters with the assumed priors. Fig. 2 shows in the logarithmic
scale, the probability density functions (PDF)s of the acceleration obtained using the responses from the
true and perturbed initial conditions for the same set of model parameters. One can see a perfect agree-
ment between the responses which means that the PDF of the acceleration is almost entirely insensitive
to small variations. In [15], it has been shown that the spectra remains nearly invariant, which means
that it could potentially be used to infer model parameters.

Parameter True value Lower bound Upper bound

c 0.05 0.005 0.5
k3 50 5 500
ξ0 3 2.9 3.1
ξ1 4 3.9 4.1

Table 1: Parameter ranges of the cubic model.
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Figure 2: Comparison between the PDFs of the acceleration using the true and perturbed initial condi-
tions in the logarithmic scale.

In this example, the model parameters and the initial conditions are treated as the parameters to be
inferred. In the ABC-NS settings, α0, β0, f0 are set to 0.3, 0.6 and 1.1 respectively. The initial tolerance
ε1 is set to 100 and a population of size 1000 is used. To infer the system, the Euclidean distance between
the observed and simulated PDFs, given by Eq. (4), is used to measure the discrepancy between the
observed and simulated data:

∆(plf , p̂
l
f ) =

[
n∑
l=1

(
log(plf )− log(p̂f

l)
)2] 1

2

(4)

where plf and p̂
l
f are the probabilities associated with the observed and simulated data, respectively.

3.2 Results and discussion
Fig. 3 shows the histograms of the inferred parameters; fromwhich one can observe that the obtained his-
tograms are well peaked on the true parameters. Clearly, the PDF of the acceleration can be considered
as a good feature to infer the model parameters and the initial conditions.

Fig. 4 shows the model response and the 99% confidence bounds over a few populations. One can
see how by decreasing the tolerance threshold values, the model prediction is improved and one gains
confidence in the results. The algorithm is stopped when negligible change on the posterior distributions
is noticed.

In conclusion, the obtained results show the effectiveness and efficiency of the ABC-NS algorithm to
infer the chaotic system in question. It has been shown that the ABC-NS is a convenient way to recover
the model parameters, the initial conditions and the associated uncertainties precisely. In addition, the
algorithm is able to achieve a low tolerance threshold value within a reasonable computational time.
The ABC-NS algorithm is now applied for model selection.

3.3 Model selection using ABC-NS
The performance of the ABC-NS algorithm is investigated here for model selection by considering two
candidate models: the cubic and cubic-quintic Duffing oscillators denoted byM1 andM2, respectively.
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Figure 3: Histograms of the inferred model parameters (the green triangles show the true values).

The equation of motion associated to each model is given by:

M1 : z̈ + cż + kz + k3z
3 = f(t) (5)

M2 : z̈ + cż + kz + k3z
3 + k5z

5 = f(t) (6)

where c is the damping, k is the linear stiffness, k3 and k5 are the non-linear stiffness coefficients. z,
ż and z̈ are displacement, velocity and acceleration responses, respectively. The excitation f(t) is a
Gaussian sequence with mean zero and standard deviation of 10.

To make Bayesian inference, a noise-free and noisy training data sets were generated from the cubic-
quintic model and shown in Fig. 5 (the first n = 500 data points). The noisy training data set has been
corrupted with Gaussian noise of standard deviation 1%. To evaluate the model predictability, a set of
testing data has been generated and is shown in Fig. 5. Table 2 summarises the prior lower and upper
bounds associated to each unknown parameter of the models.

Parameter True value Lower bound Upper bound

c 0.05 0.005 0.5
k 50 10 100
k3 103 500 1500
k5 105 0.8× 104 1.5× 105

Table 2: Parameter ranges of competing models.

For ABC-NS implementation, the same scheme shown in Algorithm 2 is followed by considering the
candidate models as an additional hyperparameter. One sets the prior probabilities of each model to be
equal, i.e., p(M1) = p(M2) = 1

2 . The convergence criterion used here is when the difference between
two successive tolerance values is less than 10−7. For the rest, the same hyperparameters defined for
Example 1 have been used. It should be noted that the number of the dropped and remaining particles
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Figure 4: Predicted response and the 99% confidence bounds for different tolerance values.
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Figure 5: Training and testing data sets.
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are rounded to the nearest integer in each step of the algorithm. The reader is referred to [16] for more
details and examples. Finally, the normalised mean square error (MSE) given by Eq. (7) is selected as a
metric to measure the discrepancy between the observed and simulated data:

∆(z∗, z) =
100

nσ2z∗

n∑
i=1

(z∗i − zi)
2 (7)

where n is the size of the training data, σ2z∗ is the variance of the observed displacement; z∗ and z are
the observed and simulated displacements given by the model, respectively.

3.4 Results and discussion
Fig. 6 shows the model posterior probabilities over a selected number of populations. One can see
how the ABC-NS algorithm oscillates between the competing models and finishes by converging to the
correct model at population 21 (The same tendency has been shown with the noisy training data, not
shown here for brevity). From the same figure, one can see that the algorithm clearly tries first to favour
the cubic model, this can be seen from populations 3 to 11. Then, when the cubic model is no longer
able to match the data quite well, the ABC-NS algorithm jumps to the complex model to accommodate
the nonlinearity coming from the quintic term. This proves that the parsimony principle [17] is well
embedded in the ABC-NS algorithm by favouring simpler models. It should be noted that in the classical
Bayesian inference methods, overly-complexmodels are penalised through an ad-hoc penalty termwhile
the ABC algorithm naturally favours simpler models as shown here, which is a major advantage.
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Figure 6: Model posterior probabilities.

Figs. 7 and 8 show the histograms of the unknown parameters obtained using the ABC-NS algorithm
for both training data sets. For the noise-free training data set, one can see how the histograms are
well peaked on the true values which proves the ability of the algorithm to correctly recover the model
parameters.
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Figure 7: Histograms for the model parameters using free-noise training data set.
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Figure 8: Histograms for the model parameters using noisy training data set.

Fig. 9 shows the acceptance rates over the populations for both cases. One can see how the ABC-
NS algorithm maintains a relatively high acceptance rate over the populations considering the cubic
and cubic-quintic Duffing oscillators with 4 and 5 parameters, respectively. At early populations, the
acceptance rates decrease because the parameter space is large, then steadily rise as the the volume of
the research space shrinks down and because one of the competing models has been already eliminated.
At population 60, the acceptance rates stabilise around an average value higher than 50 per cent.
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Figure 9: Acceptance rates over the populations.

Tables 3 and 4 summarise the statistics coming from the approximate Bayesian inference analysis using
noise-free and noisy training data sets. The estimated model parameters are then used to evaluate the
model predictability. As one can see from Figs. 10 and 11, the training data are well predicted 500 points
ahead for both training data sets. The normalised MSE associated to each training data set estimated on
the first 500 data points is equal to 5.02×10−10 and 2.12, respectively. The prediction remains excellent
based on the model parameter inferred using free-noise training data (see, Fig. 10, normalisd MSE is
equal to 8.10× 10−7). However, the predicton based on the model parameters inferred using the noisy
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training data shows that beyond 865 data point the model is no longer valid (normalised MSE>5) since
it is unable to provide a good prediction based on the normalised MSE values shown in Fig. 12. Based
on [1], the discrepancy measure formulated in Eq. (7) has shown that a value greater than 5 generally
indicates a poor model.

Parameter True value Posterior estimates

Mean, µ Std. Dev, σ [5th, 95th] percentiles

c 0.05 0.05 3.3893× 10−5 [4.9945× 10−2, 5.0055× 10−2]
k 50 49.9999 7.9975× 10−3 [49.9868, 50.0132]
k3 103 1000.0017 1.7377× 10−00 [9.9703× 102, 1.0029× 103]
k5 105 1.0000× 105 68.1184 [9.9885× 104, 1.0011× 105]

Table 3: Posterior estimates for the cubic-quintic model parameters, free-noise training data.

Parameter True value Posterior estimates

Mean, µ Std. Dev, σ [5th, 95th] percentiles

c 0.05 0.0627 3.3890× 10−5 [6.2682× 10−2, 6.2792× 10−2]
k 50 48.8073 8.3118× 10−3 [4.8793× 101, 4.8821× 101]
k3 103 1243.0963 1.8271 [1.2401× 103, 1.2460× 103]
k5 105 9.5297× 104 7.1604× 101 [9.5183× 104, 9.5415× 104]

Table 4: Posterior estimates for the cubic-quintic model parameters, noisy training data.
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Figure 10: Model prediction using noise-free training data.

Finally, in order to check the repeatability of the model posterior probabilities, the ABC-NS algorithm
is run 20 times. From Fig. 13, one can see how the ABC-NS produces repeatable results with small
variations. Clearly the algorithm tries first to favour the simpler model (see the model posterior proba-
bilities at populations 3, 6 and 12) and when a higher predictive performance is required the algorithm
switches to the complex model to justify the increase in complexity.

4 Conclusion
A new approximate Bayesian computation algorithm named ABC-NS has been proposed in this paper
for parameter estimation and model selection. It is shown through two numerical examples how the
ABC-NS overcomes the low efficiency of the existing ABC algorithms by employing a nested ellip-
soidal sampling method. ABC-NS maintains a high acceptance rate over the populations, which speeds



23ème Congrès Français de Mécanique Lille, 28 au 1er Septembre 2017

0 100 200 300 400 500 600 700 800 900 1000

  Discrete time index n

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

  D
is

pl
ac

em
en

t [
m

]

  Training data   Testing data   Predicted data

Testing dataTraining data

Figure 11: Model prediction using noisy training data.
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Figure 12: Fidelity of the model prediction over the testing data test.
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Figure 13: Boxplots of the model posterior probabilities over some selected populations (20 simulations
have been performed).

up considerably the algorithm without compromising the precision of the posterior estimates. As a
result, significant savings in computational effort can be achieved. Moreover, it has been shown that
ABC-NS deals perfectly well with the model selection issue and that the parsimony principle is natu-
rally embedded in it. The ABC tells one which models are supported by the data in a straightforward
way without the need to evaluate any ad-hoc penalty terms as in the traditional Bayesian methods. A
comparison of the ABC-NS algorithm with traditional ABC-SMC is left on an upcoming journal paper.
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