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Résumé :
Cette contribution présente un modèle viscoplastique grandes déformations pour des monocristaux
poreux à cavités ellipsoidales générales. Le modèle proposé est basé sur une méthode d’homogénéisation
variationnelle non linéaire (MVAR) qui utilise un matériau de comparaison linéaire poreux pour estimer
la réponse effective du monocristal non linéaire poreux. Spécifiquement, le modèle a étendu le nouveau
modèle monocristallin poreux (Mbiakop et al. [2015b,c]) avec des relations décrivant l’évolution en
grandes transformations de la microstructure (porosité, forme et orientation des poress) de monocristaux
poreux aléatoires soumis à des conditions générales de chargement. Le présent modèle est ensuite utilisé
pour effectuer une étude de plusieurs mécanismes microstructuraux à différents régimes de triaxialité
pour plusieurs structures cristallines (BCC, HCP et FCC), différents exposants de fluage et diverses frac-
tions volumiques initiales. En particulier le fort couplage entre l’anisotropie du cristal et l’anisotropie
(morphologique) induite par la forme et l’orientation des cavités est discutée.

Abstract :

This paper presents a rate-dependent model at finite strains for porous single crystals containing gen-
eral ellipsoidal voids. The proposed model is based on a nonlinear variational homogenization method
(MVAR) which makes use of a linear comparison porous material to estimate the effective response
of the nonlinear porous single crystal. Specifically the model extended the novel porous single crystal
model (Mbiakop et al. [2015b,c]) with relations describing the evolution of microstructure (porosity,
void shape and orientation) of random porous single crystals subjected to general loading conditions.
The present model is then used in order to carry out an investigation of several microstructural mecha-
nisms at different triaxiality regime for several crystal structure (BCC, HCP and FCC), different creep
exponents and initial void volume fraction. In particular the strong coupling between the anisotropy
of the crystal and the (morphological) anisotropy induced by the shape and orientation of the voids is
discussed.

Mots clefs : Plasticité cristalline, matériaux poreux, homogénéisation, anisotropie
microstructurale.
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1 Introduction
Voids originating in the manufacturing process have a strong influence on the lifetime as well as deforma-
bility of materials and play a major role on the constitutive response of metallic alloys. Indeed, as recently
indicated by experimental observations (Srivastava et al. [2012], Kondori and Benzerga [2014a,b]) at
high enough temperatures on tensile specimens, the growth of initially present processing induced voids
in a nickel based single crystal superalloy as well as in standard polycrystals played a significant role in
limiting creep life. The presence of voids in metals is well known to be one of the main causes of duc-
tile failure, as addressed in pioneering works by (Mc Clintock [1968], Rice and Tracey [1969], Gurson
[1977]). The reader is refered to a recent review of Benzerga and Leblond [2010] for more completeness
on the bibliography in this subject.

In the context of rate-(in)dependent anisotropic matrix systems and more specifically for phenomeno-
logical Hill-type matrix, there are fewer results in the literature (see for instance Benzerga et al. [2004],
Keralavarma et al. [2011]). Porous single crystals have mainly been studied through discrete dislocations
dynamics, molecular dynamics at smaller scales or using finite element simulations. These anisotropic
matrix systems have known slip directions and contain generally a low volume fraction of impurities.
Subjected to external loads such material systems fail or decohere leading to the creation of pores, which
in turn evolve in size, shape and orientation (Srivastava and Needleman [2012]).

However, there have been only a handful of models for porous single crystals which deal with special void
geometries, loading conditions and slip system orientations. Such studies involve the study of cylindri-
cal voids with circular cross-section in a rigid-ideally plastic face-centered cubic (FCC) single crystals
using slip line theory [Gan and Kysar, 2007], the study of two-dimensional “out of plane” cylindrical
voids with circular cross-section subjected to anti-plane loadings [Idiart and Ponte Castañeda, 2007],
that of spherical voids and general loading conditions with/without microstructure evolution [Han et al.,
2013, Paux et al., 2015, Chao et al., 2016] and that of ellipsoidal voids and general loading conditions
[Mbiakop et al., 2015c]. While each one of these studies has its own significant contribution to the
understanding of the effective response of porous single crystals none of them is general enough in the
sense of arbitrary void shapes and orientations, general loading conditions and microstructure evolution.

In this regard, the aim of the present study is to propose a finite deformation viscoplastic constitutive
model for porous single crystals that is able to deal with arbitrary crystal anisotropy, arbitrary ellip-
soidal void shapes at any given orientation, general loading conditions and microstructure evolution.
The developed model used an appropriate extension of a former work of the authors [Mbiakop et al.,
2015c] combined with relations describing the evolution of microstructure (porosity, void shape and
orientation).

2 A MVAR porous single crystal model
A formulation at finite strains is proposed for porous single crystals containing ellipsoidal voids in this
section. In order to achieve this goal we will first recall the instantaneous effective behavior (Mbiakop et al.
[2015b,c]). Then based on the work of (Ponte Castañeda and Zaidman [1994], Danas and Aravas [2012]),
we will presented the relevant evolution laws for the internal microstructural variables used to describe
the volume fraction, shape and orientation of the voids. In such framework, the microstructure evolves-
on average-to ellipsoidal voids in time with different shape and orientation. At this stage, for simplicity
in the homogenization procedure elasticity effects are neglected.
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2.1 Microstructure
Let us consider a representative volume element (RVE) of a porous single crystals occupying a domain
Ω. The material is analyzed as a two-phase composite comprising the single crystal matrix (subdomain
Ω(1)) and the vacuous phase (subdomain Ω(2)). The hypothesis of separation of length scales is made
and it implies that the size of the voids (microstructure) is much smaller than the size of the matrix and
the variation of the loading conditions at the level of the matrix, thus allowing for the homogenization
of such a material system.

In the present study, following previous work of Willis [1977], we consider a “particulate” microstruc-
ture which is a generalization of the Eshelby [1957] dilute microstructure in the non-dilute regime.
More specifically, we consider a “particulate” porous material (see Fig. 1) consisting of ellipsoidal voids
aligned at a certain direction, whereas the distribution function, which is also taken to be ellipsoidal in
shape, provides information about the distribution of the centers of the pores. For simplicity, one will
also consider that the shape and orientation of the distribution function is identical to the shape and
orientation of the voids themselves (see Danas and Ponte Castañeda [2009]). Thus, as shown in Fig. 1,
the internal variables characterizing the state of the microstructure are:

• The porosity or volume fraction of the voids f = V2/V , where V = V1 + V2 is the total volume, with
V1 and V2 being the volume occupied by the matrix and the vacuous phase, respectively.

•The two aspect ratios of the lengths of the principal axes of the representative ellipsoidal void 2ai (i = 1, 2, 3),
expressed as w1 = a3/a1, w2 = a3/a2 (w3 = 1).

• The orientation unit vectors of the representative ellipsoidal void n(i), (i = 1, 2, 3), defining an or-
thonormal basis set.

Matrix Representative ellipsoidal voidRVE 

Figure 1: Representative ellipsoidal voids embedded in a crystal matrix.

The above set of the microstructural variables can then be denoted by the set

sα =
{
f, w1, w2, n(1), n(2), n(3)

}
(1)

To conclude, in the general case, where the aspect ratios and the orientation of the ellipsoidal voids are
such thatw1 ̸= w2 ̸= 1 and n(i) ̸= e(i), the overall porous material behavior becomes highly anisotropic.
Therefore estimating its overall response is a difficult challenge.

2.2 MVAR effective estimate
In the present work, we will make use of the general, nonlinear homogenization methods developed by
Ponte Castañeda [1991, 2002], which are based on the construction of a linear comparison composite
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(LCC) with the same microstructure as the nonlinear composite. Using this suitably designed variational
principle, it is shown in (Mbiakop et al. [2015c]) that a modified variational estimate of the effective
viscoplastic stress potential of a general crystalline porous material can be defined such that
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where µ(s) (∀s = 1, ...,K) is the Schmid tensor given by

µ(s) =
1

2

(
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)
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with m(s) and s(s) denoting the unit vectors normal to the slip plane and along the slip direction in the
sth system, respectively.

In addition, Ŝ
∗

is a microstructural tensor related to the Eshelby tensor (Eshelby [1957]). This tensor
contains information on the void shape and orientation and is detailed in Mbiakop et al. [2015c].

Furthermore, we can readily determine the corresponding macroscopic strain-rateD through the relation
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2.3 Evolution of microstructure at finite strains
The determination of the instantaneous effective behavior of nonlinear porous media with particulate mi-
crostructures has been carried out through a set of internal variables denoted as sα =

{
f, w1, w2, n(1), n(2), n(3)

}
(see fig. 1). For completeness, it is useful to recall here that these microstructural variables correspond
to the volume fraction of the voids or porosity f , the shape of the voids denoted with the two aspect
ratios w1 and w2, and the orientation of the principal axes of the representative ellipsoidal void, i.e., the
orientation vectors n(i), i = 1, 2, 3.

At this stage of the work, we neglect elasticity. This is done for simplicity but elasticity effects could be
added in future studies. This implies that D = D

p since D
e
= 0, where the superscript “p” and “e”

refer to plastic and elastic parts.
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2.3.1 Evolution of the porosity

Next by neglecting elastic contributions, the matrix material is plastically incompressible (crystal plas-
ticity), and thus the evolution equation for the porosity f can be obtained from mass conservation and
reads (Tvergaard and Needleman [1984])

ḟ = (1− f)Dii, i = 1, 2, 3. (7)

Furthermore, it is important to precise that void nucleation is not considered in the above relation.

2.3.2 Evolution of the aspect ratios

The evolution law for the aspect ratios is obtained by using standard kinematics and the definition wi =

a3/ai, i = 1, 2, such that (Ponte Castañeda and Zaidman [1994])

ẇi = αw wi

(
n(3) ·D(2)n(3) − n(i) ·D(2)n(i)

)
= αw wi

(
n(3) ⊗ n(3) − n(i) ⊗ n(i)

)
·D(2)

, (8)

where there is no summation on i = 1, 2 and D
(2) is the average strain-rate in the void. The scalar factor

αw has been introduced in the last expression in a heuristic manner in order to enhance the accuracy of the
evolution of the aspect ratios, since Danas and Aravas [2012] have showed that the original variational
method and consequently the present MVAR tend to underestimate the evolution of the void shape at
low stress triaxialities. The factor αw is in general considered as a free parameter that can be calibrated
from experiments.

2.3.3 Evolution of the orientation vectors

The evolution of the orientation vectors n(i), i = 1, 2, 3 is determined by the spin of the Eulerian axes
of the ellipsoidal voids, or microstructural spin ω, as

ṅ(i) = ωn(i), i = 1, 2, 3 (9)

The microstructural spin ω is related to the average spin and the average strain-rate in the void, Ω(2) and
D

(2), by the classical kinematic relation written in direct notation

ω = Ω
(2)

+
1

2

3∑
i,j=1
i̸=j

wi ̸=wj

w2
i + w2

j

w2
i − w2

j

[(
n(i) ⊗ n(j) + n(j) ⊗ n(i)

)
·D(2)

]
n(i) ⊗ n(j), w3 = 1. (10)

The special case in which at least two aspect ratios are equal is discussed later in this section.

An equivalent equation to deal with both void aspect ratios and rotation has been proposed by Madou and Leblond
[2013].

In addition, it is useful to discuss the evaluation of the Jaumann rate of the orientation vectors n(i),

denoted by
▽
n
(i)
, (i = 1, 2, 3). The Jaumann rate is related to the standard time derivative of relation (9)
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by
▽n
(i)

= ṅ(i) −Ωn(i) =
(
ω −Ω

)
n(i), i = 1, 2, 3, (11)

with Ω being the macroscopic average spin applied externally in the problem. At this point, it is con-
venient to introduce the notion of the plastic spin (Dafalias [1985]), which is defined as the spin of the
continuum relative to the microstructure, i.e.,

Ωp = Ω− ω. (12)

Consequently,
▽
n
(i)

= −Ωp n(i), i = 1, 2, 3. (13)

Furthermore, we point out that special care needs to be taken for the computation of the spin of the
Eulerian axes in the case of a spherical void, i.e., when w1 = w2 = w3 = 1, as well as for a spheroidal
void, i.e., when w1 = w2 ̸= w3 = 1 or w1 ̸= w2 = w3 = 1 or w1 = w3 ̸= w2 = 1. More specifically,
when two of the aspect ratios are equal, the component Ωp

12 becomes indeterminate. Since the spin Ω
p
12

is inconsequential in this case, it can be set equal to zero, which implies that ω12 = Ω12. This notion
can be applied whenever the shape of the void is spheroidal, in any given orientation. In the same way,
when the voids are spherical, Ωp = 0 and hence ṅ(i) = Ωn(i), i = 1, 2, 3.

3 Results: MVAR predictions
This section is concerned with some predictions of the effective response and evolution of microstructure
of random porous single crystals subjected to general loading conditions. More precisely, the evolutions
laws of the microstructural variables depicted in the previous section are applied to several crystalline
structures for a range of material parameters.

The matrix phases considered (single crystals) are taken to be initially unloaded with no hardening,
i.e. τ

(s)
0 = τ0, ∀s = 1,K, while the voids are initially spherical with w1 = w2 = 1. The initial

porosity is taken to be f0 = 1% and the elasticity effects are neglected. It should be noted that the
macroscopic response of the porous material at large deformations is strongly affected by the hardening,
the viscoplastic creep exponent, the initial porosity f0 and the initial aspect ratios w1 and w2, but we will
not carry out an exhaustive parametric study with respect to those parameters here. Moreover, in the
following, the microstructural variables will be plotted as functions of the equivalent strain εe defined
as

εe =

∫
t

√
2

3
D

′
·D

′
dt, (14)

where D
′
refers to the deviatoric part of the average strain-rate D.

Fig. 2 shows MVAR plots of (a) the equivalent stress σe, (b) the porosity f , and the aspect ratios (c) w1

and (d) w2, as a function of the equivalent strain εe, for a BCC single crystal, a creep exponent n = 10,
four Lode angles θ = 0o, 20o, 30o, 60o and a low value of the stress triaxiality (XΣ = 0.1). The main
observation in Fig. 2a is that there is a slight effect of the Lode angle on the overall mechanical response
of the porous single crystal.

In addition, let us analyze plots for the evolution of f , w1 andw2 in Fig. 2bâ-d, respectively, as a function
of the equivalent strain εe. In graph. 2b, one observes an overall reduction in the porosity f as a function
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of εe, except in the case of the Lode angle θ = 60o. Furthermore, as shown in part (c), w1 can become
significantly low for all values of θ. Moreover, as shown in part (d), w2 decreases very fast for all values
of θ except for θ = 60o, as expected. This suggests that a void collapse mechanism (i.e., flattened
cracks) is developed with increasing strain, which is also the mechanism in the context of low stress
triaxiality for porous materials with isotropic matrix (see Danas and Aravas [2012]). This observation
is not surprising since a BCC single crystal possesses a high number of slip systems (K = 48) and thus,
its response is intuitively expected to be “closer” to an isotropic one.
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Figure 2: Plots of the MVAR estimates in the context of a porous BCC single crystal, for (a) the equivalent stress
σe, (b) the porosity f , and the aspect ratios (c) w1 and (d) w2 as a function of the equivalent strain σe, for a low
value of the stress triaxiality (XΣ = 0.1) and four values of the Lode angle. The creep exponent is n = 10 and
the voids are initially spherical, with a porosity f0 = 1%.

On the other hand, Fig. 3 presents MVAR plots of (a) the equivalent stress σe and (b) the porosity f as
a function of the equivalent strain εe, for a HCP single crystal with K = 3 and K = 12 slip systems, a
creep exponent n = 10, a Lode angle θ = 60o and a low value of the stress triaxiality (XΣ = 0.1). As
we can seen in Fig. 3b, the porosity slightly increases for the HCP porous crystal with K = 12 (basal,
prismatic and pyramidal Π2) active slip systems while it doesn’t evolve for the HCP crystal with K = 3

basal active slip systems, since such single crystal exhibits an incompressible overall response. This
result is consistent with those observed in Chao et al. [2016].

4 Conclusions
A porous viscoplastic model has been developed for single crystals comprising general ellipsoidal voids
at finite strains, for arbitrary orientation subjected general loading conditions. In the present framework,
the microstructure evolves-on average-to ellipsoidal voids in time with different shape and orientation.
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Figure 3: Plots of the MVAR estimates in the context of a porous HCP single crystal with K = 3 and K = 12
slip systems, for (a) the equivalent stress σe and (b) the porosity f as a function of the equivalent strain εe, for a
low value of the stress triaxiality (XΣ = 1) and a Lode angle θ = 60o. The creep exponent is n = 10 and the
voids are initially spherical, with a porosity f0 = 1%.

In order to achieve this goal, the instantaneous effective behavior proposed in Mbiakop et al. [2015b,c]
is extended with evolution laws for the internal microstructural variables used to describe the volume
fraction, shape and orientation of the voids. To the best knowledge of the authors, the proposed macro-
scopic model is the first attempt in the literature for porous single crystals containing general ellipsoidal
voids at finite strains.

Few predictions have then been provided for a large range of material parameters in the context of porous
single crystals subjected to general loading conditions. More precisely, an investigation of the several
microstructural mechanisms has been carried out at low triaxiality regime for several crystal structure
(BCC, HCP). Then, a void collapse mechanism (i.e., flattened cracks) developed with increasing strain
was found as the dominant mechanism at low stress triaxiality while it is well known that the evolution
of porosity was the main softening mechanism in the high triaxiality context, leads to “high-triaxiality
coalescence” of the voids.

At low stress triaxialities, the effect of the Lode angle was critical in the evolution of the porosity and
the void shapes. In addition, for highly anisotropic crystals such as the three basal active slip systems
in certain HCP crystal structure, the porous crystal was fully incompressible response, even if the void
aspect ratios evolve. Such result is consistent with those observed in Chao et al. [2016].

Moreover, it will be useful to assess the accuracy of the MVAR predictions of the evolution of the
shape and the orientation of the voids through numerical simulations. Indeed, it is well known that
crystallographic aspects of plastic deformation around holes significantly affect their growth rate and in
general the microstructural evolution (Srivastava and Needleman [2012]). Such validation will give us
ideas in order to study coalescence of voids for arbitrary loading conditions.

As another remark, the “MVAR” model has been applied in the context of porous single crystals with
viscoplastic and ideally-plastic matrix phase. Nevertheless, in real life applications, the mechanical
behavior of the materials under consideration exhibits also elastic effects. Consequently, it would be of
great importance to be able to incorporate elastic effects in the above described models, which would
allow the study of “elasto-viscoplastic” porous single crystals.

In addition to the elasticity effects, one should also introduce the possible development of instabilities,
i.e. localization to failure (see for instance Danas and Ponte Castañeda [2012]). Thus, we would be
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able to treat more realistic problems such as metal ductile fracture and fatigue at the level of the grains.
In the case of fatigue, a non-monotonic load is applied leading to unloading and unstable behaviors
in the porous single crystal. As a first step, an investigation of the effect of cyclic loading conditions
and finite deformations upon microstructure evolution and material softening/hardening using finite el-
ement (FEM) periodic unit-cell calculations has been carried out with 3D geometry at small and large
number of cycles (Mbiakop et al. [2015a]). Then, as it has been the case for isotropic materials (see
Danas and Aravas [2012]), the MVAR could then be implemented to standard finite element packages
for solving real life applications such as rolling or extrusion of metals, ductile fracture, necking of spec-
imens or mechanical behavior of Lotus-type metals for biological applications.
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