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Résumé :

L’objectif de ce travail est d’examiner l’effet de la rotation sur l’écoulement généré par un gradient de

température horizontal dans une cavité tridimensionnelle. La rotation, par l’action de la force de Corio-

lis, induit une diminution considérable de l’amplitude de vitesse de l’écoulement cellulaire initial avec

un renforcement de la vitesse transversale initialement faible. L’écoulement se trouve ainsi dévié vers la

droite de la composante de vitesse dominante, ce qui engendre une modification cruciale de sa structure.

L’écoulement évolue ainsi d’une boucle longitudinale unique vers une structure asymptotique complexe

constituée de deux rouleaux longitudinaux concentrés près des parois latérales, qui sont mutuellement

alimentés par un rouleau transverse dans toute la région de coeur. Dans les régions de montée ou de

descente du fluide aux extrémités, la rotation favorise l’écoulement à travers la boucle longitudinale

qui se situe à droite quand l’écoulement s’approche de la paroi considérée. Enfin, un modèle monodi-

mensionnel simplifié, valable uniquement dans le noyau de la cavité, est dérivé et comparé aux résultats

numériques.

Abstract:

The aim of this work is to examine the effect of the rotation on the flow generated by a horizontal tem-

perature gradient in a three-dimensional cavity. The rotation, through the action of the Coriolis force,

induces a decrease of the main longitudinal flow, with a concomitant increase of the originally weak

transverse velocity. This effect is particularly pronounced in the core of the cavity, which was the ori-

ginal region of main flow. As a result, the overall flow structure is changed. The initial well symmetric

single roll flow is first deviated towards a diagonal of the cavity, with only the central symmetry kept. At

larger rotation rates, in an asymptotic domain where all the velocity components eventually decrease, the
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longitudinal circulation is maintained in two rolls along the front and back lateral walls, while mainly

transverse transfers occur in the core between these rolls. Finally, a 1D simplified model which is valid

only in the core of the cavity is derived and compared with the numerical results.

Keywords : natural convection, rotating flow, heated flow, Taylor number.

1 Introduction

Heated flows have aroused the interest of physicists for a long time because of their implication in various

fundamental and engineering fields such as astrophysics, geophysics, cooling processes of nuclear reac-

tors, electronics or even the human body. One of the problems encountered in the crystal growth using

the horizontal Bridgman method (it consists in pulling the melt in a horizontal temperature gradient) is

the appearance of striations in the solid which are nothing else than a recording of hydrodynamic insta-

bilities developing in the melt and gradually attached in the solid as the solidification front advances [1].

The appearance and the nature of these instabilities depend on several parameters such as the nature of

the materials (Prandtl number) [2, 3], the container and even the boundary conditions [4, 5].

At a larger scale, buoyant convection insures the atmospheric circulation of air like the trade winds which

are known as the Hadley circulation [6]. Side-heated convection has been experimentally investigated

in order to mimic this situation by Fultz [7] and by Hide [8, 19]. These experiments were carried out

in a fluid confined between two co-axial cylinders subjected to a radial horizontal temperature gradient.

In addition to the horizontal temperature gradient, Hide [8, 19] added the effect of the Coriolis force by

setting its experiment in a rotating table.

Side-heated convection has been widely studied in the past. Experimental and numerical studies of the

flow in differentially heated rectangular cavities and its first transitions were performed. See, for example,

Hurle et al. [10], Hof et al. [11], Ben Hadid et al. [12, 13], Henry et al. [2, 14], Xu et al. [15] and Dridi et al.

[16]. In these studies, the effects of the fluid nature (Prandtl number), the cavity dimensions, the acoustic

streaming and the magnetic field (as well as its directional effect) were investigated in order to control

the flow and its transition to oscillatory convection. However, the effect of rotation on the convection in

a side heated rectangular cavity has never been discussed in the literature, despite its interest in many

situations.

2 Mathematical model and symmetries of the problem

We consider the flow in a cavity of aspect ratios AX = L/h = 4 and AZ = l/h = 2 where L is the

length along the longitudinal x-direction, h is the height along the vertical y-direction, and l is the width

along the transverse z-direction. This cavity is heated from the side ans is submitted to a rotation around

the vertical y-axis (Fig.1). The Boussinesq approximation is used to describe the density evolution in

the buoyancy term.

By using h, h2/ν, ν/h, ρ0ν
2/h2 and ∆T/AX as reference quantities for length, time, velocity, pressure

and temperature, the dimensionless equations of momentum, mass and energy become:

∂t~V + ~V .~∇~V = −~∇p+∇2~V +GrΘ~ey +
√
Ta (~V × ~ey), (1)
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Figure 1 – Geometry and symmetries of the problem.

∂tΘ+ ~V .~∇Θ = Pr−1∇2Θ, (2)

~∇.~V = 0, (3)

where Ta = 4Ω2
0h

4/ν2 is the Taylor number, Gr = gβh3∆T/ν2 is the Grashof number and Pr = ν/α

is the Prandtl number.

The boundary conditions are the no-slip conditions for the velocity U = V = W = 0 at the walls and

~∇Θ.~n = 0 for insulating lateral walls (at y = ±1/2 and z = ±AZ/2) and Θ(x = ±AX/2) = ±AX/2

for the isothermal walls.

These boundary conditions and geometry impose some symmetries, which can be broken or kept in

a given situation (rotating or static cavity for example). It is therefore important to determine them

before doing the simulations. By analyzing the geometry given in Fig. 1, we can determine the following

symmetries in the case without rotation:

— Symmetry with respect to the z-axis, S∆ (π rotation):

S∆ : (x, y, z, t) → (−x,−y, z, t) , (U, V,W,Θ) → (−U,−V,W,−Θ)

— Symmetry with respect to the vertical middle plane perpendicular to the z-axis, SP :

SP : (x, y, z, t) → (x, y,−z, t) , (U, V,W,Θ) → (U, V,−W,Θ)

— Symmetry with respect to the center of the cavity as a resulting global symmetry, SC such that:

SC = S∆.SP

This SC symmetry is the only symmetry that remains in the case with rotation.

Equations (1), (2) and (3) are solved using a spectral element code developed by Ben Hadid and Henry

[13]. Spatial discretization is achieved by Gauss-Lobatto-Legendre polynomials while time discretiza-

tion is carried out by a semi-implicit scheme proposed by Karniadakis [17] where the nonlinear terms

are included explicitly while the linear terms are solved implicitly and finally, the pressure is determined

by imposing the incompressibility constraint. For more details on the code, see El Gallaf [18].
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3 Results and discussions

The numerical simulations of the steady state flow were carried out for Taylor numbers ranging from 0

to 106, while the Grashof and the Prandtl number have been fixed at 2.5× 104 and 10−3 respectively.

3.1 Flow structure

The laminar buoyant convection obtained before the onset of the first instability in the absence of rota-

tion (Ta = 0) is a one cell flow occupying the entire enclosure, in which the flow rises at the hot side

boundary, moves toward the cold wall and then descends along it to finally reach the hot wall again.

However, it is known that in the case of extended cavities, the flow undergoes the development of rolls

inside the long cell flow due to a shear instability [4]. Because of the flow confinement in our parallele-

pipedic cavity, this transition has become an imperfect bifurcation [5] and its effect appears as a bump

in the vertical velocity profile V (x) at x ≈ ±0.7 (Fig. 2a).
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Figure 2 – Effect of the Taylor number on: (a) the longitudinal velocity profile U(y) at x = z = 0 and

(b) the vertical velocity profile V (x) at y = z = 0 for Pr = 10−3 and Gr = 2.5 × 104.

When we introduce the rotation, the dynamics of the flow is affected by the Coriolis force. It does not

act as a forcing of the flow (as it preserves the case of rest when the Grashof number is zero), but

as a correction, acting on the components of the velocity initially induced by differentially heating the

sidewalls. With the rotation chosen here (see Fig. 1) the flow is thus diverted to the right for the dominant

longitudinal component of the velocity, creating transverse velocities while maintaining the symmetry

SC with respect to the center. This deviation of the flow causes great changes in the structure of the

convective flow, greatly reducing the velocity amplitude (Figs. 2 and 3) and modifying the original

single loop to a more complex structure with transverse velocities, which will be exhibited in the next

paragraph.

More detailed information on the structure of the flow is now given by velocity contours in transverse

planes (Fig. 3). The choice of this plane to represent the velocity contours is motivated by the fact that

this plane illustrates the flow symmetries. In the case without rotation (Ta = 0), the contours of the

longitudinal component of the velocity U(y, z) in the central transverse plane at x = 0 show clearly the

existence of a single convective cell within the flow and reflect the symmetries S∆, SP and SC (Fig. 3a).

When the cavity is set in rotation (Ta > 0), the symmetries S∆ and SP are broken and the convective

cell undergoes substantial changes resulting from the deviation of the flow due to the rotation (Figs.

3b, 3c and 3d). The longitudinal velocity component becomes more concentrated in two corners, the

upper corner at z = −1 and the lower corner at z = 1 (Figs. 3b and 3c). When the Taylor number is

sufficiently increased, maxima of the longitudinal velocity also appear in the two other corners. Finally,

at large Taylor numbers (Ta = 106), an asymptotic state structure with almost symmetric maxima of
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Figure 3 – Longitudinal velocity contours U(y, z) at x = 0 for different Taylor numbers for Pr = 10−3

and Gr = 2.5 × 104.

the longitudinal velocity in the four corners is obtained (Fig. 3d). It was observed that the evolution

towards this asymptotic state is delayed to larger values of the Taylor number when the Grashof number

is increased. It seems that the inertia acquired by the flow when the Grashof number is large makes the

deviation of the flow by the rotation, and thus the structural changes more difficult.
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Figure 4 – Velocity contours in the transverse (y,z) plane at x = 0 for Ta = 106, Pr = 10−3 and

Gr = 2.5 × 104.
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As shown in Fig. 4 by the velocity contours obtained for Ta = 106, the resulting asymptotic flow is

composed of two longitudinal rolls concentrated near the front and back lateral walls, in places where

the initial velocity was weak due to adherence effect, implying weak effect of rotation. These longitudinal

flows are fed by a transverse circulation occurring throughout the core region. In the region of ascent

and descent of the longitudinal flow (at the hot and cold walls), the rotation promotes the flow through

the longitudinal loop that is on the right when the flow approaches the considered wall. This figure (Fig.

4d) shows also (through the norm of the components contained in the transverse plane located at x = 0

(V (y, z) and W (y, z))) that the mean principal longitudinal loop is now rather changed to transverse

loops.

3.2 Lagrangian description

An other way to describe the flow is the Lagrangian description. In order to analyze the effect of the

rotation on the trajectories of fluid particles, a Lagrangian tracking is computed through the expression

~X(t) = ~X0 +

∫ t=n×∆t

t=0

~V dt

where n = 5× 105 and ∆t = 0.01, ~X0 is the initial position at t = 0 of the particle we track, ~V is the

(a) Ta = 0 (b) Ta = 102

(c) Ta = 104 (d) Ta = 106

Figure 5 – Particle tracks issued from the point (x = −1.9, y = 0.45, z = −0.9) for different Taylor

numbers, Pr = 10−3 and Gr = 2.5 × 104.

velocity field and t = n×∆t is the observation time. In the results presented in Fig. 5, the fluid particle

is initially located at the position ~X0(x = −1.9, y = 0.45, z = −0.9). For Ta=0 (Fig. 5a), we observe

the motion described by Henry and Buffat [14]. It consists in a spiral motion in the two regions separated

by the longitudinal vertical plane passing through the center of the cavity ; a particle near the edge makes

a spiral motion of increasing radius when going towards the plane of symmetry ; it does not cross it and

quickly returns to the edge of the cavity. When the cavity is submitted to a moderate rotation (Ta = 102



23ème Congrès Français de Mécanique Lille, 28 au 1er Septembre 2017

and Ta = 104), we observe the same kind of spiral path (Figs. 5b and 5c) but oriented with respect to

a diagonal plane instead of the longitudinal central plane. This resulting structure is due to the fact that

the rotation shifts the trajectories to the right. If we further increase the Taylor number (Ta = 106) and

consequently the effect of rotation, we observe longitudinal paths along the front and back lateral walls,

which acknowledge the existence of two longitudinal rolls in these places, and transverse to oblique

paths in the core, which connect these longitudinal circulations (Fig. 5d).

3.3 Toward a simplified model

In the results presented above, we showed clearly the creation of transverse velocities in the cavity. We

seek here to derive a simplified model which will be valid in the core region when the cavity is large

enough.

We consider a cavity whose length L and width l are very large in comparison to its height h (L >> h

and l >> h) and which is submitted to a horizontal gradient of temperature. We also assume that there

exist vertical boundaries located at (x, z) = ±∞ which allow the flow to return. In such a situation,

a steady parallel flow solution depending only on the vertical y coordinate can be derived. The mean

hypothesis that we are making here is that the velocity field is composed of two components: U(y)

the longitudinal flow originally forced by the applied temperature gradient and W (y) the transverse

component created by the Coriolis force and which must be equal to zero in the case of non-rotating

situation. The temperature profile is given by T (x, y) = x+Θ(y).

Under these assumptions and by taking the curl of the momentum balance, equations (1), (2) and (3) are

reduced to two coupled ODEs of third order for U(y) and W (y), which can be solved by introducing a

complex velocity profile ψ(y) = U(y) + iW (y) (BCs: ψ(y = ±1/2) = ψ(y = 0) = 0). It follows that

ψ(y) satisfies
(

d3

dy3
+ i

√
Ta

d

dy

)

ψ(y) = Gr. (4)

We finally obtain

ψ(y) =
iGr

2
√
Ta







sinh
(

(i−1) 4
√
Ta

√
2

y
)

sinh
(

(i−1) 4
√
Ta

2
√
2

) − 2y






(5)

The complex velocity profile (5) obtained herein is known in Russian literature also (see Chekulaev &

Svarts [20], for example). The velocity components are obtained by separating the real and the imaginary

parts of (5), i.e. U(y) = Re [ψ(y)] and W (y) = Im [ψ(y)]. Note that

ψ(y) ∼ Gr
(

y3

6 − y
24

)

as Ta → 0,

which is the well-known cubical Hadley profile [19].

We present in Fig. 6 a comparison between the analytic profiles presented in solid lines and the 3D

numerical results plotted with circles. We have plotted u(y) = U(y)/Gr and w(y) = W (y)/Gr. The

numerical results have been computed for Gr = 103. We see that the comparison is very good, showing

that the 1D approximation proposed by the simplified model is meaningful for the flow in the central

zone of sufficiently large 3D cavities.
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Figure 6 – Effect of the Taylor number on: (a) the longitudinal velocity profile u(y) = U(y)/Gr and

(b) the transverse velocity profile w(y) =W (y)/Gr at y = z = 0.

4 Conclusion

This study considered the effect of rotation on convection in a differentially heated cavity. The increase

of the Taylor number was found to induce significant modifications of the flow intensity and structure.

The rotation induces a decrease of the convective flow intensity, due to the decrease of the main longitu-

dinal flow. This decrease is associated with an increase of the transverse velocity component, which was

initially weak in the convective flow. This transfer of energy between the horizontal velocity components

is connected with the Coriolis force and the deviation of the velocity components it induces: a longi-

tudinal component creates a transverse component, which, in turn, induces a longitudinal component

opposite to the initial one.

At large Taylor numbers, all the velocity components will eventually decrease with asymptotic variations.

The global structure of the convective flow is also changed under rotation. Breakings of symmetry occur

and only the symmetry with respect to the center of the cavity is preserved. The simple one-roll flow

occupying the whole cavity is gradually modified when rotation is applied, with concentration of the

longitudinal flow in specific zones and increased importance of the transverse circulation.

In the asymptotic state, the flow consists of two longitudinal rolls, located close to the front and back

lateral walls, and a strong exchange between these two rolls through transverse circulation loops.
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