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Abstract – Procedures for Multi-Objective Non-deterministic Optimization (MONO) of complex engineering 

systems are discussed and the optimization of a Vehicle Restraint System (VRS) is realized with Finite Element 

(FE) simulation. In the previous studies: performances of a VRS have been tested by crashing with a vehicle and 

the FE model of the crash test has been created; the critical factors whose uncertainties contribute the most to the 

performance uncertainties of the VRS have been identified through sensitivity analysis. In this article: the inputs‟ 

space of design variables and outputs uncertainties are studied to define design intervals and the constraints of 

optimization; Kriging interpolation method is used to create the surrogate model and the precision of the 

surrogate model is estimated with a new approach; uncertainties of the critical factors are considered and the 

VRS is optimized through MONO with the surrogate model; performances of the optimized device are evaluated 

under different crash conditions. 

Key words: crash simulation / multi-objective optimization / robust design / uncertainty analysis / sensitivity 

analysis / Vehicle Restraint Systems 

1 Introduction 

Vehicle Restraint Systems (VRS) are specially designed 

to restrain an errant vehicle by dissipating or absorbing the 

impact energy and redirecting the vehicles to reduce crash 

accident severity and protect the roadside equipment [1]. 

Before being installed on the roadside, a VRS must be tested 

by crashing with vehicles to evaluate its performances for 

severity reduction in traffic accident. The installation 

conditions and crash conditions of the VRS are innumerable. 

In Europe, the norm EN1317 [2, 3] define the containment 

levels, the relative standardized test conditions and 

performance criteria of the VRS. Uncertain factors in the 

crash test of the VRS complicate the validation of the device. 

It is economically impossible to evaluate the robustness of a 

design through the crash tests. Dynamic simulation is used 

in the design of the VRS. By defining the model input 

parameters at different possible levels and taking samples 

with Design of Experiment (DOE), C.Goubel [4] analyzed 

qualitatively the robustness of a VRS with dynamic 

simulations. As for the optimization of a VRS, the situations 

are much more complicate: 

 Many engineering optimization problems have 

multiple nonlinear objectives and constraints, mixed 

continuous-discrete design variables; 

 Uncertainty of parameters is inevitable and can 

significantly degrade the performance of a design; 

 The norm EN1317 specified the test conditions of the 

device. But in reality, the accidents occur at 

different crash situations. 

The designs with multiple objectives considering model 

uncertainties are “Multi-Objective and Non-deterministic 

Optimization (MONO)”. Multi-objective optimization, i.e. 

Pareto optimization, is a multiple criteria decision making 

process. Pareto efficiency is a state of allocation of 

resources in which it is impossible to make any one 

individual better off without making at least one individual 

worse off. Non-deterministic optimization [5] aims to 

optimized the performances of a system, and maximize the 

robustness of the design in the same time. 

The challenges for MONO of complex engineering 

systems include: high calculation cost of model simulation; 

numerous uncertain factors in the models; lack of 

information about the design space and model uncertainties; 



diversity of the crash conditions. The procedures are 

discussed for MONO of engineering systems; MONO of a 

VRS is realized and the optimized design is evaluated under 

various accident situations. 

2 Procedures for MONO 

2.1 System modeling & Simplification 

Thousands of model runs are needed in the computer 

aided optimization problems. Numerical simulations are 

usually of high calculation cost. A model of high accuracy 

and relatively low calculation cost is needed, and the system 

modeling & simplification are of great importance. 

2.2 Model Sensitivity Analysis 

Although many uncertain factors may exist in an 

engineering model, only a few of them are influential on 

model performance. Optimizations considering all the 

uncertain factors may increase greatly the number of 

simulations. Sensitivity Analysis (SA) [6] is a natural 

previous & next step of robust optimization, especially for 

the applications where it is critical to identify the factors 

whose uncertainties have great influence on system‟s 

performances. The uncertain factors can be reduced by 

fixing the non-influential factors and considering only the 

uncertainties of critical ones in MONO. 

2.3 Define of optimization Objects and Constraints 

For a model with inputs vector x, uncertain factors 

vector p, outputs vector F(x,p) of m dimensions, inequality 

constraints gi, equality constraints hj, design variables 

intervals [x
under

 x
upper

], the multi-objective optimization 

problem is formulated as: 
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Uncertain factors are fixed to their mean values p0 in 

deterministic optimization. Influenced by uncertainties of p, 

the objects and constraints need to be redefined in MONO. 

Considering model feasibility [7], the constraints are defined: 
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Eq. (2) ensures the feasibility of inequality constraints gj 

and restrains the deviation of equality constraints hj under 

the limits ξj. Eq. (3) defines the model feasibility with 

probability and statistics approach, and restrains that the 

feasible probabilities of the constraints exceed Ci and Dj. 

The outputs can be redefined as follows for the purpose 

of objective robustness in non-deterministic design: 

  min max ,
x p

F x p                          (4) 

or 

    0min , c
x p

F x p σ F                   (5) 

or 

     0 0min , . max , ,s t   F
x

F x p F x p F x p Δ  (6) 

Eq. (4) minimizes the possible maximum output values 

of the designs. Eq. (5), with statistics method, calculates the 

outputs distributions for each design, and minimizes the sum 

of normal value and deviation value with scale factor c. Eq. 

(6), with robust optimization, selects the optimized solutions 

with outputs deviations under the defined limit ΔF [8]. 

2.4 Define of design space 

Before the optimization process, the intervals of design 

variables [x
under

 x
upper

] need to be selected. Initially, no 

information about inputs space is known and the intervals 

are defined artificially. The predefined design space may not 

cover the whole designs which are Pareto efficient or covers 

the regions away from the optimal solutions which will 

cause unnecessary simulations for optimization. DOE takes 

samples and runs the simulations cross the whole inputs 

space. The rationality of the predefined inputs space can be 

checked through DOE, and then the design space could be 

redefined to cover the all possible Pareto efficient inputs 

combinations and to take samples around the optimal points.  

2.5 Metamodelling 

Engineering simulations are usually of high calculation 

cost and metamodelling is used to create the surrogate 

model. DOE and model runs cross the whole inputs space 

are needed to clarify the relationship between outputs and 

inputs. For a model of nx design variables and np uncertain 

factors, the model inputs dimension is nx+np and large 

number of samples is required in order to ensure accuracy of 

the surrogate model. Latin Hypercube Sampling (LHS) is a 

widely used DOE technique for model performance study 

[9,10]. Stochastic interpolation with Kriging method gives 

unbiased prediction of the intermediate values and is used in 

the domain of simulation experiment [11,12]. 

2.6 Optimization 

Optimization algorithms [13,14] (such as Genetic 

Algorithm, Particle Swarm Optimization, Simulated 



 

Annealing, etc.) can be used for multi-objective design and 

have been integrated in mathematical software. 

2.7 Verification of surrogate model 

Surrogate model needs to be validated before being used 

to replace the simulation model. However, it‟s hard to define 

the accepted error of surrogate model in MONO problems: 

 Both the uncertain factors and the design variables are 

inputs of the model in MONO problems, and the 

surrogate model needs to be validated across the 

whole inputs space of high dimension; 

 Precision of a surrogate model may influence the 

Pareto efficiency of designs [8]: in Fig. 1-left, both i 

and j are Pareto efficient predicted with the 

surrogate model, but in fact design i is more 

preferable for both outputs criteria; in Fig. 1-right, 

design i is preferable than j predicted by the 

surrogate model, in fact it is exactly the opposite. 

 

 

Fig. 1 Failure of design selection with surrogate model, true value: 

outputs calculated by model simulation; predicted value: outputs 

predicted with surrogate model; Ru: error region of surrogate model 

Li [8] created the criteria to examine if Pareto efficiency 

of a design could be influenced due to the error of the 

surrogate model---The efficiency influenced designs will be 

calculated with simulations and non-influenced designs will 

be predicted with surrogate model during optimization 

process. Li‟s method is efficient, but efforts are needed to 

integrate this approach into optimization algorithm. 

Here a practical way is proposed to ensure the accuracy 

of surrogate model in MONO problems and the validation of 

the surrogate model is shown in Fig. 2: 

 The surrogate model will firstly be created with 

reasonable number of samples and be used for 

system optimization; 

 The Pareto efficient designs X0i=(x0i
1
, x0i

2
,…,x0i

k
,) are 

then selected, where k is the number of design 

variables, i=1,2,…,n, for the optimization design 

with n Pareto efficient solutions; 

 The input intervals of the optimal designs are studied 

and defined: [min(x0
j
) max(x0

j
)], where 

min(x0
j
)=min(x01

j
, x02

j
,…, x0n

j
), max(x0

j
)=max(x01

j
, 

x02
j
,…, x0n

j
), with j=1,2,…,k; 

 Additional samples will be taken and simulated in the 

new defined input intervals [min(x0
j
) max(x0

j
)], The 

surrogate model is then updated with the new 

samples and the model will be optimized with the 

new surrogate model; new optimal designs 

X1i=(x1i
1
, x1i

2
,…,x1i

k
,) and updated intervals [min(x1

j
) 

max(x1
j
)] are obtained; 

 The samples refinement for accuracy improvement of 

surrogate model and the system re-optimization are 

repeated, and final optimal designs are obtained 

when they are no longer influenced by the 

refinement of samples. 

 

 

Fig. 2 Validation of the surrogate model 

Instead of taking additional samples cross the whole 

inputs space, refinement of samples around the potential 

optimal solutions which will greatly reduce additional 

samples required to create an accurate surrogate model.  

More efforts are needed to normalize the metamodeling 

& optimization process: the number of samples initially 

taken should be proportional to the number of design 

variables, and their relationship could be created; the 

conditions when the optimal solutions are no longer 

influenced by the refinement of samples need to be 

standardized. 

3 MONO of VRS 

3.1 VRS & Vehicle crash model 

A steel VRS of containment level N2 were tested under 

TB32 test conditions [15]. The tested VRS is composed with 

the beam Rail, Spacer, support Post and the components are 

assembled by bolt connections. The tested VRS is illustrated 

in Fig. 3. A guided vehicle of 1431 kg in mass struck the 

VRS at speed 113.6km/h, at an angle of 20°. 

The FE model is illustrated in Fig. 4. Considering the 

magnitude of components‟ deformations, the crash model 

was modeled and simplified in the four aspects with FE 

program LS-DYNA [16]: 

1) Coarse mesh with refinement for the parts with large 

deformations; 

2) Simplification of VRS continuations at both ends of 



the barrier with spring elements to apply the 

boundary constraints; 

3) Detailed modeling of the soil for the parts with large 

deformation and its replacement by spring elements 

for the others soil parts; 

4) Bolted joints simplification with spring elements for 

rigid connections. 

Fig. 5 compared the experimental test and simulation 

results at different impact time. The FE model has been 

proved to be of acceptable accuracy. Different from detailed 

modeling which may take days of time for the crash 

simulation, the simplified model takes only about 5 hours 

for a single model run. 

 

  

Fig. 3 The VRS evaluated by crash test with vehicle 

 

Fig. 4 Numerical model for crashing test of the VRS 

 

Fig. 5 Crashing test and simulation at different impact time 

3.2 Sensitivity Analysis of VRS 

SA of the VRS was realized in the previous research [17], 

11 uncertain variables were chosen: 

 Uncertain factors of material mechanical properties: 

Rail Yield strength (RY), Rail young Modulus (RM), 

Spacer Yield strength (SY), Spacer young Modulus 

(SM), Post Yield strength (PY) and Post young 

Modulus (PM); 

 Tolerances of fabrication: Rail Thickness (RT), Spacer 

Thickness (ST), Post Thickness (PT); 

 Uncertainties in installations: Soil bulk Modulus 

(SoilM), Bolt connection Pre-load (BP). 

Characterization of uncertainty in inputs is an important 

part of SA as it determines both uncertainty in model 

outputs and sensitivity of outputs to the elements of 

uncertain input factors. To simplify the characterization of 

uncertainty, the uncertain parameters are defined with the 

classic „crude‟ method by supposing they have normal 

distributions, and mean values and standard deviations of 

the uncertain factors are listed in Table 1. 

Table 1 Uncertain factors of VRS model  

Type Vars Unit Mean St D 

Steel S235 

mechanical 

properties 

RY MPa 284.5 21.5 

RM GPa 203 12.6 

SY MPa 284.5 21.5 

SM GPa 203 12.6 

PY MPa 284.5 21.5 

PM GPa 203 12.6 

Tolerances of 

fabrication 

RT mm 3 0.15 

ST mm 3 0.15 

PT mm 5 0.25 

Installation 

uncertainties 

SoilM MPa 400 100 

BP N 12432 4144 

 

Performances of the VRS were evaluated by the two 

criteria [3]: 

 Theoretical Head Impact Velocity (THIV): as the 

vehicle changes its speed during contact with the 

safety feature, the head of the occupant continues 

moving freely until it strikes an inner surface of the 

vehicle with the velocity THIV;  

 The Working width (W) is the distance between the 

traffic face of the restraint system and the maximum 

dynamic lateral position of any major part of the 

system. Dynamic Deflection (Dd) is the maximum 

lateral dynamic displacement of the side facing the 

traffic of the restraint system (see Fig. 6). Dd is used 

to measure the deformation of VRS during the 

impact process. 

 

 

Fig. 6 Measurement of the VRS deformation 

The SA are summarized in Table 2: Two-level screening 

with Orthogonal Array (OA) and multi-level screening with 

Morris analysis (MA) were used to identify the influential 

uncertain factors and Sobol‟ indices was used to quantify the 

influences of the influential ones. 2 out of the 11 uncertain 

factors (PY, PT) were identified as of great influence on 

VRS performances and their influences were quantified. 

Instead of considering the uncertainties of all the 11 

uncertain factors, only the uncertainties of PY and PT will 

be studied in the MONO. 



 

Table 2 SA of the VRS 

Eleven uncertain factors 
RY, RM, SY, SM, PY, PM, 

RT, ST, PT, SoilM, BP 

Step1: OA screening with 12 model runs 
Factors chosen after OA RY, RM, PY, RT, ST, PT 

Step2: MA screening with 42 model runs 

Factors chosen after MA PY, RT, PT 

Step3: Sobol‟ indices 
with 120 model runs to 

create the surrogate model 

Critical factors PY, PT 

3.3 Objects and Constraints of VRS optimization  

The objectives of optimization are to minimize THIV and 

Dd, with model Mass (i.e. price of installation) as constraint. 

Both formula (4), (6) will be used for the definition of 

objectives and constraints in MONO and the deterministic 

optimization results will also be calculated as comparison. 

Model Mass uncertainties are caused by tolerances of PT, 

and the maximum deviation of Mass remains nearly the 

same. The influence of uncertain factors on Mass is 

neglected.  

3.4 Design variables of VRS 

VRS components are illustrated in Fig. 7. The dimension 

parameters H, E, A, B are used as design variables. The 

under boundary and upper boundary of each design variable 

is pre-defined as initial value decrease and increase by 20%. 

50 samples are taken through LHS and the performances 

of VRS are analyzed in the pre-defined design space: The 

decrease of rail dimensions, especially E, degrades the 

redirection capability of the VRS (see Fig. 8); Decrease of 

post dimensions increases greatly the deflection of VRS. 

The design intervals are re-defined and are listed in Table 3. 

 

 

Fig. 7 The components of VRS 

 

Fig. 8 Failure of vehicle redirection when H and E decrease 

Table 3 Intervals of design variables  

Variables Under Initial/mm  Upper 

H -15% 310 +25% 
E -10% 81 +25% 

A -20% 100 +25% 

B -15% 50 +25% 

3.5 Creation of VRS surrogate model 

240 samples are taken with LHS in the inputs space of 6 

dimensions (4 design variables and 2 uncertain factors). The 

scatter plots of uncertain factors PT, PY and model outputs 

THIV, Dd are illustrated in Fig. 9. Kriging interpolation is 

used to create the surrogate mode, with H, E, A, B, PT, PY 

as inputs and THIV, Dd, Mass as outputs.  

3.6 Optimization of VRS 

3.6.1 Simplification of Objectives  

It is evident that THIV has positive correlation with 

uncertain factors, and Dd is the opposite (see Fig. 9). The 

objects of the optimization problem is to minimize THIV 

and Dd, and we are interest in the maximum value of a 

design causing by uncertain factors (i.e.  max ,
p

F x p in 

function (4)(6)). 
,

max
PT PY

THIV is obtained when PT, PY take 

their maximum values and 
,

max
PT PY

Dd is obtained when PT, 

PY take their minimum values. Assuming PT, PY have 

normal distributions and their mean values and standard 

deviations are shown in eq.(7), the maximum and minimum 

values of PT, PY are taken by eq. (8), with their Cumulative 

Distribution Function (CDF) values shown in eq.(9): 
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Monte Carlo designs are used to test the rationality of eq. 

(8): For different designs xi, LHS is used to test the 

relationship between uncertain factors and outputs with the 

surrogate model. With minPT, maxPT, minPY, maxPY 

defined in eq. (8), we have: 
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  (10) 

The Outer-Inner optimization problem defined in eq. 

(4)(6) requires nout×nin model runs (nout: number of model 



runs for outer minimization; nin: number of model runs for 

inner maximization). The Inner maximization process is 

simplified, which greatly reduced model runs of the 

optimization problem; In addition, the surrogate model is 

only need to be validated in the design space, with the 

uncertain factors PT, PY fixed at specified values. 

 

 

Fig. 9 Scatterplot of PT, PY and outputs THIV, Dd 

3.6.2 Define of constraints 

In order to define Mass constraint and limits of outputs 

deviations ΔF (see eq. (6)), 1000 samples are generated with 

LHS for uncertainty study of model outputs: model Mass 

varies in the interval [610 810]kg; deviation of THIV (i.e. 

maxTHIV(xi,p)-THIV(xi,p0)) varies in the interval [0.17 

1.84]km/h; deviation of Dd (i.e. maxDd(xi,p)-Dd(xi,p0)) 

varies in the interval [37 102]mm. The constraints are 

determined artificially according to the uncertainties of 

model outputs as: 
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3.6.3 Results analysis 

Matlab is used to create the surrogate model and the 

automate design and optimization platform Isight is used for 

multi-objective optimization with Genetic Algorithm. 

Precision of the surrogate model is validated with the 

proposed method. With eq. (11) as constraint, the Pareto 

efficient solutions are illustrated in Fig. 10. Designs in 

Region 1 reduced both Dd and THIV , and designs in Region 

2 are preferred when the main objective of the optimization 

is to decrease deformations of the VRS during the crash 

process. Scatterplots in Fig. 11-14 illustrate the relationship 

between inputs‟ scaling factors and the outputs of the Pareto 

efficient designs. The optimal solution can be chosen 

depending on the requires of designer and the 5 designs a, b, 

c, d, e (see Fig. 10) are studied: 

 For all optimization solutions, inputs E, B are 

proposed to be increased with their scaling values 

change in interval [1.16 1.24] and interval [1.16 1.25] 

respectively; 

 The value of input A is proposed to be decreased 

(design b, c, d, e) when the minimization of Dd isn‟t 

of critical importance; A is proposed to be increased 

and H is proposed to be decreased in situations 

where the main object of the optimization design is 

to minimize deformation and to increase 

containment level of the device. 

 From solutions a to e, the dimensions of the VRS 

support Post (i.e. inputs A, B) tend to decrease, and 

the scaling factor of input H need to be increased 

properly in order to maintain the optimal state. 

 The under design limit for the scaling factor of input A 

is 0.8 and the upper design limit for the scaling 

factor of input B is 1.25 in this study. Unfortunately, 

these two limits restrained the selection of Pareto 

efficient designs (see Fig. 13, Fig. 14). Better 

solutions might be found beyond these two limits.  

 In addition, more materials are needed in order to 

increase the rigidity of the VRS and decrease the 

output Dd, the constraint Mass defined in the 

optimization problem mainly restraint the 

minimization of Dd. 

In short, the dimensions of the w-beam Rail component, 

especially for input E, need to be increased in order to 

increase the energy absorption capability of the VRS. The 

Post component is of rectangular shape (see Fig. 7) with 

A=100mm, B=50mm.The input A is proposed to be 

decreased and input B is proposed to be increased in the 

optimization process. Table 4 listed the criteria of the 

optimized design e and the initial design. The optimization 

could improve both the performances of the VRS and its 

robustness. 

 

 

Fig. 10 Pareto efficient solutions of VRS MONO 



 

 

Fig. 11 Scatterplot of H and outputs of Pareto efficient solutions 

 

Fig. 12 Scatterplot of E and outputs of Pareto efficient solutions 

 

Fig. 13 Scatterplot of A and outputs of Pareto efficient solutions 

 

Fig. 14 Scatterplot of B and outputs of Pareto efficient solutions 

 

Table 4 Performance criteria of initial and the optimized design 

 
Severity Def Robust criteria 

THIV (km/h) Dd (m) ΔTHIV ΔDd 

Initial 21.66 1.180 1.09 0.072 
e 21.19 1.111 0.46 0.070 

3.6.4 Comparison of different MONO methods 

Fig. 15 compared the optimal solutions of MONO (eq. 

(4) as objectives) with deterministic optimization. Fig. 16 

compared the optimal solutions of MONO (eq. (6) as objects) 

with deterministic optimization. For the optimization of 

VRS, we have: 

 In Fig. 15: Outputs values and their possible maximum 

values obtained with MONO coincide with those of 

deterministic solutions. And this MONO method 

hasn‟t increase evidently the model robustness 

relative to deterministic designs. 

 In Fig. 16: The influences of uncertain factors on the 

performance criteria of the VRS, especially Dd, 

decrease with the increase of model rigidity. The 

optimal solutions with low model deformation Dd 

and relatively high rigidity are selected with the 

robust method. Robust Optimization with eq. (6) 

select the optimal designs with outputs uncertainties 

within the limit ΔF. The value of ΔF influences the 

robustness of the model and the selection of optimal 

designs. 

 

 

Fig. 15 Optimal designs obtained with Multi-Objective 

Deterministic (MOD) and with Non-deterministic (MON) 

 

Fig. 16 Optimal designs of VRS obtained with different methods 



3.7 Generalization of impact conditions 

The performances of the VRS are optimized under the 

specified crash conditions. In fact, the real crash accidents 

are more complex: 

 The installation conditions of road equipment are 

innumerable. Straight longitudinal barriers are tested 

although curved installations exist. Flat ground is 

recommended even though installations are situated 

sometimes on sloped shoulders or behind curbs; 

 The errant vehicle may of various types (bus, truck, 

car, even motorcycle). Crash speed & angle, crash 

position, friction coefficient of road surface and the 

tire, etc. are not fixed factors. 

The optimized design e (see Fig. 10) is evaluated under 

generalized test conditions. Restrained by numerical model, 

only the crash velocity and angle are considered. 

Simulations of the design with velocity (v) and angle (a) at 

different levels are realized and relationship between crash 

conditions and performance criteria of the VRS are studied: 

 With polynomial regression analysis: relationships 

between a and v with output THIV at values (18 21 

24 27 30) km/h are created and shown in Fig. 17. 

The relationship functions are listed in eq.(12); 

relationships between a and v with working width 

(W) [3] at levels (W2 W3 W4 W5 W6) are created 

and shown in Fig. 18. The relationship functions are 

listed in eq.(13). 

 The VRS are fail to redirect the vehicle only at the 

extreme crash conditions, e.g v=130km/h, a>32° or 

v>100km/h, a=32°. The threshold (fail line) under 

which the device has well redirect the vehicle is 

shown with dotted line in Fig. 17 and Fig. 18; 

 In all possible crash conditions, the accident severity is 

of level A [3] with THIV<33km/h. The accident 

severity are restrained at acceptable level; 

 The device works well for small value of impact angle: 

we have THIV<18km/h and W<W3 when a=10°, 

even for v=130km/h. 

 Increment of a will greatly increase the severity of 

accident and the deformations of the VRS. 

 

 

Fig. 17 Relationship between a and v with THIV at different levels 

 

Fig. 18 Relationship between a and v with W at different levels 
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4 Conclusions 

The development of VRS is a complex process. In 

Europe, the norm EN1317 specified the crash conditions 

under which a VRS must be tested before being installed 

along the roadside and defined the performance criteria of a 

device. However, the crash conditions are numerous, 

uncertain factors may degrade the performances of a design, 

and various design factors need to be considered in the 

optimization process. The procedure for MONO of complex 

engineering systems is studied and a VRS is optimized with 

the proposed process:  

 Before the optimization process, numerical model 

need to be simplified to reduce single model run 

cost. And influential factors of which the 

uncertainties should be considered in optimization 

process need to be identified with SA;  

 The MONO minimizes the outputs with their 

deviations constrained in limited intervals. The 

design space and model outputs uncertainties need 

to be evaluated before the MONO design;  



 

 Surrogate model are used to substitute the high 

calculation cost model in optimization problems. 

Accuracy of a surrogate model needs to be ensured 

in order to secure the precision of optimization. 

Instead of evaluate the surrogate model across the 

whole inputs space, refinement of samples around 

the potential optimal solutions could greatly reduce 

the additional samples required to create an accurate 

surrogate model; 

 Constraints and objectives can be of different forms 

depending on the demands of designers. The VRS is 

optimized with robust method, and strategies are 

proposed for optimization of the device. 

 Optimal solutions obtained with different methods are 

compared: the robust method with eq. (6) as 

objectives is preferred for the MONO of the VRS. 

 The optimized design e shown in Fig. 10 is chosen. 

Performances of the design are evaluated under 

different crash conditions and the relationships 

between the impact speed and the impact angle are 

created with the performance criteria defined at 

different levels. The optimized device is capable to 

redirect the errant vehicles at almost all the crash 

conditions and to restrain the accident severity at 

level A. And it fails to redirect the errant vehicles 

only at extreme crash conditions. 
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