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Résumé :

Dans cette communication une extension du modèle élastoplastique avec écrouissage isotrope GTN

(Gurson-Tvergaard-Needleman) est proposée. Le modèle de comportement proposé se différencie du

modèle GTN par un potentiel plastique pré-existant qui a la particularité de dépendre explicitement

du troisième invariant des contraintes. En outre, les constantes de Tvergaard varient avec la porosité

du matériau considéré. Le modèle proposé est utilisé pour simuler numériquement le comportement à

la rupture d’éprouvettes “butterfly” soumises à des chargements mixtes de cisaillement et de traction.

Les résultats fournis par le modèle proposé et le modèle GTN sont très proches avant l’amorçage de la

rupture en zone centrale de l’éprouvette. Cette observation est valable aussi bien pour les chargements à

traction-dominante que pour les chargements à cisaillement dominant. Pour ces derniers, les résultats

se distinguent dès le début de la rupture de l’éprouvette.

Abstract :

An extended version of the well-known GTN (Gurson-Tvergaard-Needleman) isotropic hardening

model is proposed in this paper. The yield function of the proposed constitutive model possesses the

distinctiveness to explicitly depend upon the third stress invariant. Besides, the Tvergaard parameters

depend upon the void volume fraction. The proposed constitutive model is used to numerically analyze

the failure behaviour of butterfly specimen. As long as softening initiation of specimen is not reached,

the computational results highlight similarities and good agreement with those provided by the use

of the GTN model. These observations hold for tension-dominated deformation and shear-dominated

deformation as well. However, for the later loading, discrepancy shows up as soon as specimen failure

starts.

Mots clefs : Ductile failure ; porous materials ; shear-dominated loa-
ding ; simulation.



23ème Congrès Français de Mécanique Lille, 28 au 1er Septembre 2017

1 Introduction

This investigation addresses the use of an extended version of the GTN isotropic hardening

model (Gurson-Tvergaad-Needleman) to analyse the ductile failure behaviour of butterfly

specimen subjected to combined shear and tension large deformations. The GTN model is

the first micromechanical model introducing a strong coupling between deformation and

damage [7, 5]. To put it in a nutshell, the material is assumed to be composed of a dense

elastic-plastic matrix sprinkle with evenly distributed spherical microvoids. As regard failure

behaviour, when the stress triaxiality (the ratio of the first to second stress invariants) is

high enough, the voids remain near spherical and, as a matter of fact, the ductile fracture

process is rather well described by the GTN model. On the other hand, if void nucleation

is disregarded, this model cannot describe ductile damage evolution for shear-dominated

loading. For such a loading for which stress triaxiality is low and even zero in case of pure

shear, continued softening leading to ductile failure is known to occur [8, 4]. An extension of

the GTN’s plastic potential was proposed in [11] where the authors focused their study on

the determination of yield surfaces for porous plastic materials using a huge number of finite

element simulations. Rather the considered RVE was a cube containing a spherical void or

parts of spherical voids. The obtained yield points was fitted by a new yield function which

turned out to be similar to the Gurson one for porosity ranging between a very small value

to the percolation threshold. This yield function was found to explicitly depend upon the

third stress invariant.

In order to examine the effect of stress triaxiality and shear-dominated loading upon material

failure, a constitutive GTN-like model based on the proposed plastic potential is numerically

implemented in a finite element program. The presence of the third stress invariant in the

yield function typically results in a high degree of non-linearity. The constitutive equations

and the coalescence criterion based on the effective porosity are integrated using an algo-

rithm based on the return mapping method. The proposed model is then used to analyze

the behavior of a three-dimensional optimized butterfly specimen [10] subjected to shear-

dominated and tension-dominated deformation, resulting in low and high stress triaxialities

in the middle section of the specimen, respectively. The calculations have been carried out in

Abaqus/Explicit and similar values for the damage parameters have been used for both the

proposed model and the GTN one in order to compare their ability to predict void growth

to coalescence and the corresponding failure mechanism. The problem formulation and nu-

merical method follow that in [14] where further details and additional references are given.

Cartesian tensor notation is used and the origin of the coordinate system is taken to be at the

center of the specimen.

2 Problem formulation

2.1 Constitutive relations

An extension of the GTN’s plastic potential with no extra parameters which fits the nume-

rical data well and is valid for all void volume fractions and triaxial stress states has been

proposed in [11]. The porous ductile materials contain spherical empty voids arranged in
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cubic arrays, namely, simple cubic (SC), Body-Centred Cubic (BCC) and Face-Centred Cubic

(FCC) arrays. FEA was used to simulate unit cells and the macroscopic yield surfaces of the

porous materials were obtained using the probing technique which goal is to obtain a yield

function in an analytical expression that can be

used in continuum studies. The matrix mate-

rial is almost rigid, perfectly plastic and unit

cells were meshed with cubes. Depending on

the unit cell at hand, the void volume fractions

f considered range from 0.02 to around 0.90

(percolation threshold of the matrix material).

For more detailed explanations of the subject,

the reader are referred to the paper [11].

(a) BCC microstructure (b) FCC microstructure

Figure 1 – Two cubic unit cells,

(Courtesy of A.P. Roberts [11]).

Let I3 and J3 be the determinant of the stress tensor σ and the third stress invariant of the

deviatoric stress tensor σ
′, respectively : I3 := det (σ), J3 := 1

3 tr σ
′3. I3 and J3 are related by

I3 = J3 +
1
3 p q2 − p3. The approximate Gurson-Tvergaard-like condition proposed in [11]

reads
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where the macroscopic Cauchy stress tensor σ is resolved as σ = −p1+ 2
3 q n with n =

3
2

σ
′

q where p = − 1
3 tr σ represents the hydrostatic pressure, 1 is the second order identity

tensor, σ
′ is the deviatoric stress tensor, and q =

(

3
2 σ
′ : σ

′
)1/2

is the von Mises stress.

In (1) f is the volume fraction of voids, σ̄ is the effective flow stress of the damage-free

matrix material which is a function of the effective plastic strain ǭp, (q1, q2) are the Tvergaard

parameters, and H = (H1, H2) is a vector comprising the scalar state variables H1 = ǭp and

H2 = f .

In stress space (p, q, I3), yield points were found by monotonically increasing macroscopic

strain with fixed ratios until the macroscopic equivalent stress reaches a maximum. For each

of the three cubic unit cells, a least-squares fit with an extension of the GTN’s yield function

was found only approximately with deviations becoming more pronounced as pressure p or

void volume fraction f were increased. Note that for the extended yield function Φ given

by (1), the Tvergaard q-like parameters a1 and a2 depend on f , that is a1 = a1( f ), a2 = a2( f ).

It linearly depends upon the third stress invariant I3 with coefficient proportional to the

hydrostatic pressure p. The parameter s, also depending on f , determines the influence of

the new term in the yield condition (1) which reduces to that of the classical GTN model for

s = 0, a1 = q1 f and a2 = q2. Whenever the constant s is non-zero, there is an effect of I3 on

the plastic flow. Clearly the yield function Φ contains three functions of void-volume fraction

f , namely a1, a2 and s which are slightly different for each of the three cubic microstructures

considered in [11].

The constitutive equations can be written in a rate format as

ǫ̇ = ǫ̇
e + ǫ̇

p , σ̇ = Ce : (ǫ̇− ǫ̇
p) , ǫ̇

p = λ̇ r (σ; H) , Ḣ = λ̇ h (σ; H) (2)
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where Ce is the elastic moduli tensor, r is the direction of the plastic flow which depends

on the current stress and on a finite set of plastic internal variables H accounting for history

effects and h is the direction of the rate of these plastic internal variables. In associated

plasticity, r is the gradient of the yield function Φ :

rij (σ; H) =
∂Φ

∂ σij
(p, q, J3; H) = −

1

3

∂Φ

∂p
δij +

3

2 q

∂Φ

∂q
σ′ij +
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∂J3
σ′ik σ′kj −

2

9

∂Φ

∂J3
q2 δij (3)

The plastic strain rate, Eq. (2)3, is trivially decomposed into volumetric and deviatoric parts,

ǫ̇
p =

1

3
ǫ̇

p
v 1+ ǫ̇

p
q , which facilitates development of the integration algorithm :

ǫ̇
p
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(4)

It should be noted at this stage of calculation that, due to the presence of the third stress

invariant J3 in the expression of the yield function Φ, and in view of expression (3)2, the

deviatoric component ǫ̇
p
q cannot be put in the form ǫ̇

p
q = ǫ̇

p
q n, where n is the deviatoric

strain rate tensor normal to the yield surface Φ = 0 and which norm is unity. This form has

turned out to be very successful for applying the implicit integration scheme based on the

Aravas’s method [2].

The current effective stress governing flow of the damage-free matrix material σ̄ which is

a function of the von Mises accumulated plastic strain ǭp, through the hardening law σ̄ =

σ̄(ǭp). The effective void volume fraction f ⋆ was intended to simulate the rapid loss of strength

accompanying void coalescence. To determine the plastic multiplier, the loading unloading

conditions should be imposed in a Kuhn-Tucker form as

λ̇ ≥ 0, Φ(p, q, J3; H) ≤ 0, λ̇ Φ(p, q, J3; H) = 0 (5)

implying that during plastic loading, Φ = 0, λ̇ ≥ 0 and Φ̇ = 0. This condition (consistency

condition) allows the determination of the plastic multiplier which specifies the magnitude

of the plastic strain rate [6, 1, 15].

2.2 Stress integration algorithm

The computed porous plastic material response is strongly dependent on the computational

procedure for stress calculation, usually called the stress integration. The presence of the

third stress invariant J3 in the yield condition (1) typically results in a high degree of non-

linearity and thereby an adapted numerical algorithms. Implicit solution strategies for
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models depending on the third stress

invariant have been developed, in par-

ticular, for models of general isotropic

elasto-plastic geomaterials [6]. Generally

speaking, regarding elasto-plastic ma-

terial, the incremental-iterative analysis

consists in dividing up the applied load

into a number of small increments, and

within each increment, iterations are per-

formed. The final stress and hardening

parameters are determined solving the

non-linear equations iteratively so that

the stress increment fulfills the consis-

tency condition. Herein, a stress inte-

gration algorithm based on the general

backward-Euler return algorithm [6, 1,

15] has been developed and implemen-

ted into Abaqus/Explicit [14]. Box right

summarizes the main steps of the algo-

rithm. The programmed user subroutine

Vumat is then called by the FE code at

each element integration point, for each

increment, and during each load step.

❶ Initialization

(a) Establish ∆ǫ, Ht, σ t, Stol, Stolσ, StolH, StolΦ, and Nmax
L ;

(b) Establish the constitutive model parameters ;

(c) Set NL = 0 and Ht+∆t = Ht

❷ Compute elastic predictor σ
T
t+∆t, and Φ

T := Φ(σT
t+∆t; Ht+∆t).

(a) Perform loading/unloading check.

(b) If (Φ < Stol), set σ t+∆t = σ
T
t+∆t and go to step ❾

❸ Set σ t+∆t = σ
T
t+∆t and calculate rt+∆t and

(

∂ Φ

∂ Ht+∆t

)

. h.

❹ Set R(1)

Φ
= Φ

T

(a) Compute initial value for ∆ λ ;

(b) Compute σ t+∆t and Ht+∆t ;

(c) Set σ t+∆t = σ
(1)
t+∆t and Ht+∆t = H

(1)
t+∆t.

❺ Begin iterations

(a) Compute R(1)

Φ
= Φ(σ t+∆t, Ht+∆t) and rt+∆t ;

(b) Compute σ
(2)
t+∆t and H(2)

t+∆t ;

(c) Compute R(1)
σ := σ

(2)
t+∆t− σ

(1)
t+∆t and R(1)

H := σ
(1)
t+∆t− σ

(2)
t+∆t.

❻ Find errors eœ, eH and eΦ.

(a) Perform convergence check ;

(b) If converged go to step ❾.

❼ Set NL ← NL + 1

• If NL > Nmax
L , STOP.

• If converged go to step ❾.

❽ Compute δλ, δσ and δH.

(a) Update σ
(1)
t+∆t ← σ

(1)
t+∆t + δσ, H

(2)
t+∆t ← H

(1)
t+∆t + δH and ∆ λ

(1)
t+∆t ←

∆ λ
(1)
t+∆t ;

(b) Set σ t+∆t = σ
1
t+∆t and Ht+∆t = H1

t+∆t ;

(c) Go to step ❺.

❾ Return to the main program

3 Butterfly specimen under shear and tensile loading

The geometry of the butterfly specimen, proposed and designed by Bai and Wierzbicki [3]

and Mohr and Henn [12], is such that fracture triggers within the flat large central area of the

gage section. Consequently, the start failure zone is then remote from the lateral free edges.

This geometry exhibits an abrupt change in thickness between the gage section and the

specimen shoulders. The distinctive features of the optimized geometry obtained by Dunand

and Mohr [10] is a gage section of reduced thickness bounded by shoulders of clothoid

shape. As a result, wide range of stress and strain states within the middle gage section can

be displayed by simultaneously loading the top and bottom of the specimen boundaries,

horizontally and/or vertically. Fig. 2 shows a schematic representation of the geometry of

the specimen under consideration. Hereafter, calculations are performed on steel alloys in

order to determine the stress and strain fields within the specimen gage section. Numerous

and various loading conditions, ranging from pure shear to transverse plane strain tension,

are considered.

• Loading conditions : the bottom face of the specimen x = −Ho/2 is maintained fixed,

whereas the top face x = Ho/2 is subject to a controlled displacement. If the specimen is

horizontally loaded, a pure shear stress state is obtained, while an approximate plane strain

tension or compression, depending on the load direction, is obtained by loading the specimen

vertically. The controlled displacement is expressed as u = uxex + uyey with ux = α uy,
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Figure 2 – Schematic representation of the geometry and loading of a butterfly specimen,
(adapted from Refs. [10, 9])

(0 < α < 1) for shear-dominated deformation loading, and uy = β ux, ((0 < β < 1) for

tension-dominated deformation loading. The biaxial loading parameters α and β are kept

constant along the whole process of deformation. In short, the boundary conditions can be

expressed as follows :

u(x, Ho/2, t) = uxex + uyey , u(x,−Ho/2, t) = 0 , 0 ≤ t < T. (6)

where the components ux and uy are proportional and T is the time period of the analysis.

In this communication, the addressed loading conditions of the butterfly specimen are as

follows : (i) we start with a pure shear loading with a controlled displacement given then

by u(x, Ho/2, t) = u
f
xex with u

f
x > 0 ; In this circumstance, stress triaxialities in the vicinity

of the middle section of the specimen are expected to be very close to zero (at least before

localization occurs) ; (ii) afterwards, a uniaxial tension loading is considered. The correspon-

ding smoothly controlled displacement is given by u(x, Ho/2, t) = um
y ey where um

y > 0.

On the contrary of the previous loading condition, uniaxial tension load results in higher

stress triaxialities in the vicinity of the middle section of the specimen. The magnitude of um
x

(shear loading) and um
y (tension loading) are determined by trial and error ; (iii) the speci-

men is also subject to a set of six loading paths starting with a shear-dominated deformation

loading (α = 0.10) and for which α = 0.10, 0.20, 0.30, 0.60, 0.80 and 0.90. As a matter of

fact, according to Danas and Aravas [9], a shear-dominated deformation loading is attained

through the choice of α = 0.10 ; (iv) the final considered loadings consist in a set of six loa-

ding paths starting with a tension-dominated deformation loading (β = 0.10) and for which

β = 0.10, 0.20, 0.30, 0.60, 0.80 and 0.90.

• Materials : the sound matrix of the porous material at hand is assumed to exhibit isotropic

work-hardening characteristics following the power law σ̄/σo(ǭp) =
(

1 + E ǭp/σo

)N
, where

σo denotes the initial yield stress, E is the Young’s modulus, and N is the strain hardening

exponent. The used values for these parameters are E/σo = 300, and N = 0.1 ; as for the

Poisson’s ratio, it is taken to be ν = 0.3 [9]. The matrix phase is considered to be initially

unloaded with zero accumulated plastic strain ǭp = 0. The material properties including the

stress-strain curve and the damage parameters employed for the description of the porous

material are conveniently listed in Table 1 : the initial porosity is taken to be fo = 0.01 ;

the Tvergaard parameters q1 and q2 have been fixed to typical values suggested in litera-

ture ; fc and f f are the coalescence parameters accounting for rapid decrease in strength as

neighbouring voids coalesce at failure.

• Simulation : the finite strain setting of Abaqus/Explicit platform is used to calculate the
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Table 1 – Material parameters and geometrical constants of the butterfly specimen [9]

Material parameters : σ̄/σo(ǭp) =
(

1 + E ǭp/σo

)N

E/σo = 300.0, ν = 0.3, N = 0.10, ρ = 7830 kg/m3

fo = 0.01, q1 = 1.5, q2 = 1.0, q3 = 2.25, fc = 0.067, f f = 0.20
Simulation constants : Ho = 12.6 mm, Lo = 62.1 mm, ho = 2.0 mm, to = 0.4 mm

5× 10−3s ≤ Time period ≤ 6× 10−3s

stress and strain fields within the butterfly specimen and also to trace their histories in the

vicinity of failure initiation. All calculations are performed under quasi-static conditions with

a time period band of 5× 10−3 to 6× 10−3s, depending on the situation under consideration

(present constitutive model, GTN model, as well as loading conditions). Exploiting the sym-

metry of the butterfly specimen geometries, only half of its thickness is discretized. Reduced

integration 3D hybrid (i.e., with constant pressure) solid element C3D6R (8-noded cubic li-

near element) has been choosen to mesh the 3D geometry of the specimen. Preliminary

calculations have showed that very fine mesh is needed to provide an accurate estimation

of stress and strain fields. An assessment of the effect of the mesh refinement, regarding

convergence and simulation time, has resulted in about 446300 elements for a typical mesh.

This is indeed a highly refined mesh.

4 Numerical results and discussion

Hereafter, results based on the present constitutive model and the GTN one are compared,

for the above stated loading conditions, in order to evaluate the predictive capabilities of the

former. The loading paths to fracture of specimens are determined in terms of displacements.

For each calculation, (i) tangential force RFx versus horizontal displacement ux curves, and

(ii) axial force RFy versus vertical displacement uy curves. are recorded. Figure 3(a) depicts

Uniaxial tension loading

Pure shear loading

GTN model

Present model

RFx, RFy(kN)

Displacements ux, uy(mm)

Present model

GTN model

Figure 3 – (a) Force-displacement curves obtained for both present and GTN constitutive
models when the butterfly specimen is subject to uniaxial tension and pure shear loadings.
(b) Failure modes under pure shear loading.

the force-displacement curves predicted by both models for pure shear (right curves) and

uniaxial tension (left curves) loadings. For the sake of space, Fig. 3(b) only shows the void

volume fraction contour corresponding to the almost total failure of the butterfly specimen

under pure shear deformation (α = 0). It should be noted that in all performed calculations,

plastic deformation localizes within the gage section prior to fracture. It can be seen from
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Fig. 3(a) that for high stress triaxiality (tension deformation), the present constitutive model

gives quite similar predictions as the GTN model. The Fy − uy curves exhibit a peak prece-

ding a fast drop of the force, which could occur simultaneously with the onset of localized

deformation. For very low stress triaxiality (shear deformation) the behaviour is qualitatively

the same ; indeed, up to the failure initiation of the specimen, the predictions incorporating

the present model are also in a close agreement with those provided by the GTN model.

Theses results could confirm the potential of the former model to fulfill to the requirement

of transferability between different loading conditions. However, there is a significant diffe-

rence at and beyond failure points of specimen.

Present model

GTN model

α = 0.0

α = 0.10

α = 0.30

α = 0.60

α = 0.80

α = 0.90

RFx(kN)

Displacements ux(mm)

Failed shear bands developed within the central

area of the gage section. The shear-dominated

loading corresponds to α = 0.10.

Figure 4 – (a) Comparison of force-displacement curves obtained for both present and GTN
constitutive models : the butterfly specimen is subject to various loadings for which the
load parameter α ranges from 0.1 (shear-dominated deformation) to 0.9 (tension-dominated
deformation). (b) Failure modes under shear-dominated deformation with α = 0.1.

Similar results are presented in Fig. 4(a) for six loadings ranging from shear-dominated

deformation (α = 0.1) to tension-dominated deformation (α = 0.9), including the afore-

mentioned loadings. For shear-dominated deformation, namely 0 ≤ α ≤ 0.3, the obtained

force-displacement curves display a “plateau” which extent depends on the loading para-

meter α. Higher the value of this parameter, wider the extent of the “plateau”. By way of

illustration, Fig. 4(b) shows the void volume fraction contour corresponding to the almost

total failure of the butterfly specimen under shear-dominated deformation with α = 0.1.

5 Conclusion

The main objective of this communication has been to address an extended version of the

GTN model based on a pre-existing yield function for porous plastic materials proposed

in [11] and its implementation within a finite element code. To this end, a fully implicit stress

integration scheme has been chosen. Similar values for the material parameters (elasticity,

hardening, Tvergaard parameters, and coalescence parameters) have been used for both the

present model and the GTN model in order to compare their ability to predict fracture of

an optimized butterfly specimen [9, 10]. The obtained computational results may be briefly

summarized as follows :

• For all performed calculations, using the proposed constitutive model and the GTN

model for comparison purpose, plastic deformation localizes within the gage section

prior to initiation of fracture faithfully in his zone.



23ème Congrès Français de Mécanique Lille, 28 au 1er Septembre 2017

• At high stress triaxialities (tension-dominated deformation), the proposed constitutive

model gives similar predictions as the GTN model. Indeed, up to the failure initiation

of the specimen, the predictions incorporating the present model are in a close agree-

ment with those provided by the GTN model. This observation insists the potential of

the former constitutive model to fulfill to the requirement of transferability between

different loading conditions.

• For shear-dominated loading, at and beyond failure points of specimen, noticeable

disagreement has been observed between predictions of both models.
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