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Résumé :
La détermination des paramètres d’interactions entre les molécules est très importante pour les simula-
tions moléculaires. Pour déterminer ces potentiels, on utilise généralement l’équation de Schrödinger.
Mais le problème rencontré réside dans la résolution des équations aux dérivées partielles (EDPs) mul-
tidimensionnelles générées après l’application de l’opérateur Hamiltonien sur chaque électron. Ainsi,
l’objectif de cette communication est de résoudre l’équation de Kohn-Sham par la méthode des éléments
finis en 3D dans le cas des systèmes mono-électronique, plus précisément le cas de l’atome d’hydrogène.

Abstract :

The accurate atomic potential determination is an essential task in the molecular simulations. The so-
called ab-initio simulations using the quantum mechanics are of great interest in the computational
physics and computational mechanics. Basically, the potential interactions can be obtained by means
of the Schrödinger’s equation. The main obstacle in the quantum mechanics is the solution of this equa-
tion whose application leads to the multi-dimensional PDEs with the Hamiltonian operator for every
single electron. The Kohn-Sham’s method which establishes the Density Functional Theory, is widely
used in the quantum mechanics field. Basically, the 3D finite element method can be used to solve the
Schrödinger’s equation for the mono-electronic cases. In the present contribution, the solution of the
Schrödinger’s equation as well as KS model have been brought via the numerical implementations un-
der 3D finite element method and eigenvalue problem solvers.

Mots clefs : Quantum mechanics, Schrödinger’s equation, Kohn-Sham me-
thod, self-consistency, 3D-FEM
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1 Brief presentation of Schrödinger’s equation
In the quantummechanics, the Schrödinger’s equation can be described as a Partial Differential Equation
and it represents how the quantum state of a physical system varies within time. It was formulated in
late 1925 by the Erwin Schrödinger [1]. This equation may be time-independent, time-dependent, 1-D,
3-D, 1-particle and N-particles. The general Schrödinger equation is displayed as below :

HΨ = EΨ on Ω ⊂ RN (1)

Where H is Hamiltonian operator of system, E represent energy, and ψ is quantum mechanical wave
function, respectively. However, the definition of the expression of Hamiltonian depends on the number
of nuclei and electron system (monoatomic or polyatomic). Equation (1) can be re-written as below :
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where, ~,Mk,me,Rik,Rkl, rij and e are the Plank constant over 2π, the mass of kth nucleus, mass of an
electron, distance between the electron and nuclei, distance between nuclei, distance between electrons
and electron charge, respectively.

1.1 Schrödinger’s equation solution for the hydrogen atom H
Basically, the Schrödinger’s equation is described by means of atomic units due to its advantage in the
computational physics and its simplicity. The simplest form of the above-mentioned equation can be
extracted for hydrogen atom, i.e. H and hydrogen cation, i.e. H2

+. The aforementioned cases involves
only an electron and as a consequence, the Schrödinger’s PDE gets reduced to the well known PDEs
whose application leads to the only 3-Dimension. Let’s get started with the simplest case in which the
analytical solution is comprehensively studied, i.e. hydrogen atom. The hydrogen atom contains only an
electron and one can readily write the Schrödinger’s equation as following :

[
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Ψ = EΨ on Ω ⊂ R3 (3)
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Equation (3) and Equation (4) can be re-written under the atomic units considerations as :
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(5)

Basically, the distance and energy units in the atomic units considerations are in [bohr] and [eV ], res-
pectively. The geometrical configuration of the hydrogen atom has been shown in Figure 1.

(a) (b)

Figure 1 – a) Geometrical configuration of hydrogen atom (inside radius=9.4486 [bohr]= 0.5 [nm] and
outside radius= 28.3459 [bohr]=1.5 [nm]), b) 3D-FEMmesh density including very fine mesh densities
at the atom nucleus.

As shown in Figure 1, the 3D-FEM model contains two spheres with very high mesh density and high
mesh density including 0.5 [nm] and 1.5 [nm]. The solution of Equation (5) by means of the requi-
red boundary conditions can be done via 3D finite element analysis using eigenvalue problem solvers
[2, 3, 4, 5]. As pointed out earlier, the state field variable is known as the wave function. The wave func-
tion can be linked to the electron probability density and electron presence probability in the quantum
mechanics. Basically, the solution of the Schrödinger’s equation gives rise the wave function distribution
determination via the finite element analysis or Density Functional Theory software in the computational
physics and quantum mechanics communities. The solution of equation via the FEM entails the eigen-
value problem solvers. To pursue the numerical solution of the above-mentioned equation, the relevant
boundary conditions must be taken into account. The Dirichlet boundary condition for the outer surfaces
can be applied and this relies on the fact that there is more unlikely to find the electron outside the second
sphere (far beyond 1.5 [nm] from the atom nucleus). The numerical solutions of the Schrödinger equa-
tion have been provided in Figure 2 and Figure 3. In Figure 2 and Figure 3, the projection of the wave
function on the XY, XY and ZX planes have been brought via 3D-FEM. Additionally, the isosurface
illustrations of wave function outcomes for different values of energy have been presented to highlight
the possible orbital shape under various energy values.

The numerical solutions for the hydrogen atom can be simply compared to those obtained by the analy-
tical solution and recently experimental observations (Figure 4).
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(a) (b)

(c) (d)

(e) (f)

Figure 2 – YZ-plane slice plot, XY-plane slice plot, ZX-plane slice plot and isosurface plot of wave
function ψ for a) E1=-0.49655 [Hartree]=-13.512 [eV ], b) E2=-0.12496 [Hartree]=-3.4003 [eV ]
c) E3=-0.12496 [Hartree]=-3.4003 [eV ], d) E4=-0.12496 [Hartree]=-3.4003 [eV ], e) E5=-0.12496
[Hartree]=-3.4003 [eV ] and f) E6=-0.055496 [Hartree]=-1.5101 [eV ].

One of the main issue in the quantum mechanics is that one can get the realistic electron density via the
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Figure 3 – YZ-plane slice plot, XY-plane slice plot, ZX-plane slice plot and isosurface plot of wave
functionψ for a)E7=-0.055496 [Hartree]=-1.5101 [eV ], b)E8=-0.055496 [Hartree]=1.5101 [eV ] c)
E9=-0.055496 [Hartree]=1.5101 [eV ], d)E10=-0.055496 [Hartree]=1.5101 [eV ], e)E11=-0.055355
[Hartree]=-1.5063 [eV ] and f) E12=-0.0550719 [Hartree]=-1.4986 [eV ] .

computational methods. That is why it is also called ab-initio method in the computational physics and
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(a) (b)

Figure 4 – a) Hydrogen atom energy level illustration in [eV ] and b) Experimental observation of un-
resonated hydrogen atom [6].

mechanics communities. It is straightforward to emphasize that the wave function has not the physical
meaningful interpretation in a general manner. As a matter of fact, the wave function square can be
considered as the probability density, i.e. |ψ|2 := ψ×ψ. The latter definition can be applied to determine
the probability of electron presence in the quantum mechanics (Figure 5).

1.2 Schrödinger’s equation solution for the hydrogen cation H2
+

The hydrogen molecule ion is also the simplest molecule. The main reason behind this fact is that it
involves only an electron like hydrogen atom. Similarly, the electronic Schrödinger equation exactly can
be extracted [7, 8, 9, 10].Moreover, the numerical solution can be realized via the Schrödinger’s equation
either.

In Figure 6a, the molecular structure of hydrogen molecule is exhibited. The H2
+ illustration has been

depicted in Figure 6b. As illustrated in Figure 6b, two protons are labeled H1 and H2. The distances
from each proton to the electron e are denoted as r1 and r2, respectively. r is the distance between
H1 andH2. Therefore, the Hamiltonian for the hydrogen molecular ion without the Born-Oppenheimer
approximation is given by :

H =
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(6)

Evidently, this Hamiltonian yields the multi-dimensional PDE equation and it can not be handled in an
usual manner like that done for the hydrogen atom case study. The Born-Oppenheimer approximation
can be used in H2

+ case in the sense that the mass of nuclei is too much greater than the electron mass
and the first part in Equation (6) vanishes as below :
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Once again, we take advantage of the Schrödinger’s equation,Hψ = Eψ with the extracted Hamiltonian
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(a) (b)

(c)

Figure 5 – Probability density (|ψ|2) for hydrogen atom at a) E1=-13.512 [eV ], b) E2=-3.4003 [eV ]
and c) E6=-1.5101 [eV ].

(a)

e

r1 r2

H1 r H2

(b)

Figure 6 – a) Hydrogen molecule, H2 molecular illustration and b) Hydrogen cation, H2
+ illustration

for Schrödinger’s equation description [11].

and we arrive at the PDE equation whose application can prepare the solution of wave function and other
relevant quantum mechanics parameter like those described earlier herein.

[
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]
ψ = Eψ on Ω ⊂ R3 (8)

It is of great importance to note that the accurate and computationally affordable solution of Equation
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(8) can be carried out via the atomic units. Hence, one can infer the following PDE for computation
purposes via FEM :

[
−1

2

(
∂

∂x1
+

∂

∂x2
+

∂

∂x3

)
− e2

r1
− e2

r2
+
e2

r

]
ψ = Eψ on Ω ⊂ R3 (9)

One main issue is to obtain the potential interaction between atoms. This can be handled via 3D-FEM
parametric computations in the sense that the distance between first and second proton can be gradually
varied, e.g. from 1 [pm]=0.001 [nm] to 1000 [pm]=1 [nm]. These 3D-FEM computations of Equa-
tion (9) give rise the potential interaction which is substantially required at atomic scale (Figure 7).
Consequently, one can obtain very important plot, i.e. potential energy versus distance for the molecular
simulation at atomic scale.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7 – Wave function distribution outcomes for H2
+ [11], a) Proton distance =0.01 [Å]=1

[pm]=0.001 [nm], b) Proton distance =0.1 [Å]=10 [pm]=0.01 [nm], c) Proton distance =0.45 [Å]=45
[pm]=0.045 [nm], d) Proton distance =0.50 [Å]=50 [pm]=0.050, e) Proton distance =1 [Å]=100
[pm]=0.1 [nm], f) Proton distance =3 [Å]=300 [pm]=0.3 [nm], g) Proton distance =5 [Å]=500
[pm]=0.5 [nm], h) Proton distance =8 [Å]=800 [pm]=0.8 [nm] and i) Proton distance =10 [Å]=1000
[pm]=1 [nm].
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Figure 8 – Potential energy versus proton distance, a) Global curve trend and b) Detailed curve [11].

In Figure 8a and Figure 8a, the potential interaction curve is plotted versus proton distance. This curve
can be approximately fitted to the semi-empirical potential expressions in the literature, e.g. Lennard-
Jones, σ=0.44 [Å] and ε=3.023 [eV ]. Let us get started withmore complex cases, e.g. hydrogenmolecule
H2 and carbon dioxide CO2. Themain problem of thesemolecules is that the Hamiltonian is gettingmore
complex and the Schrödinger’s equation turns to be multi-dimensional PDE. For instance, the number
of dimensions for H2 and CO2 molecules are equal to 3× 2=6 and 3× (6 + 2× 8)=66 dimensions, res-
pectively. Therefore, the problem gets more and more complex and the Schrödinger’s equation solution
would not be the feasible choice.

2 Kohn-Sham’s equation description

2.1 Brief Kohn-Sham’s equation description and assumptions
The Kohn-Sham’s equation would reduce the complexities coming from the Schrödinger’s equation by
means of some assumptions and approximations. The Kohn-Sham’s Ansatz provides mono-electronic
PDE for every single electron in the molecule. This equation can be written as below :

[
−1

2
∇2 + VS(r)

]
ψi(r) = εiψi(r) where VS(r) := VH(r) + VEXT(r) + VXC(r) for i = 1, ..., N

(10)

where, VS , VH, VEXT, VXC, εi and N are the Kohn-Sham effective potential, Hartree potential, external
potential, exchange-correlation potential, energy at i and number of electrons in the molecule, respecti-
vely. The Equation (10) sustains system of non-linear PDEs, e.g. a system of two PDEs for the hydrogen
molecule and a system of 22 PDEs for the CO2 molecule. These equations can be numerically solved by
means of Density Functional Theory and/or finite element method [12, 13, 14].

The main assumptions and definitions in the Kohn-Sham’s equation can be summarized as below :

— The electron density definition, n(r),
— The ground state electron density completely determines all properties of an atomic system [15,

16],
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— The existence of an energy functional which takes its minimum at the ground state electron
density n0(r) [15, 16],

In Equation (10), there are several terms. The first term is the effective potential whose value is equal
to the sum of Hartree potential, external potential and exchange-correlation potential. These potentials
can be denoted as :

VEXT :=

M∑

A=1

ZA
|RA − r|

(11a)

VH :=

∫

Ω⊂R3

n(r′)

|r − r′|dr
′ or ∇ · (−∇ (VH)) = 4π n(r) (11b)

VXC :=
δEXC

δn(r)
where EXC :=

∫

Ω⊂R3

ε(n(r))n(r)dr (11c)

The exchange-correlation potential, VXC is not well known in the Density Functional Theory based on
the Kohn-Sham’s equation. Consequently, there is a bunch of equations dealing with this term in the
quantum mechanics community, e.g. Fermi’s approximation, Local Density Approximation (LDA) and
Generalized Gradient Approximation (GGA).

EXC :=





∫

Ω

ε(n(r))n(r)dr, LDA

∫

Ω

f (n(r),∇n(r)) dr, GGA

(12)

In the next section, the numerical scheme of the Kohn-Sham’s equation is represented. It is of great
importance to recall that the Kohn-Sham convergence can be handled via the self-consistency condition.
We talk about it in the next section.

3 Kohn-Sham’s equation numerical scheme
The Kohn-Sham’s equation can be solved by means the illustrated flowchart in Figure 9. The starting
point is the computation of initial electronic density. Afterwards, the initial density is utilized to reach
the solution for Kohn-Sham equations. It is required to note that there is a non-linear PDE for every
single electron and one should deal with a system of non-linear PDEs. This leads to the wave function
for each electron ψi. It is necessary to use these wave functions to compute again new electronic density.
The Kohn-Sham’s Ansatz is applied here to verify whether the new electronic density coincides with the
previous iteration. This condition should be rigorously verified to get the solution. This issue is a vital
stage in the computations of the DFT method.

Basically, the computation of the Hartree potential can be done in an implicit manner using Poisson’s
equation. Actually, the solution of the Poisson’s equation for the Hartree potential is substantially more
computationally affordable than the explicit one. Let us take into account the case of the hydrogen mo-
lecule. The Kohn-Sham’s equation can be denoted as :
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Initial electronic density, n(r) =
N∑

i=1

|ψi|2

Effective potential calculation:

VS := VEXT + VH + VXC (1)

VEXT := −
M∑

A=1

ZA
|RA − r|

(2)

VH :=
∫

Ω

n(r′)

|r − r′|dr
′ or ∇ · (−∇VH) = 4π n(r) (3)

VXC := −δEXC

δn
, EXC :=

∫

Ω
ε(n(r)) n(r)dr (4)

Solving system of Kohn-Sham non-linear PDEs:
[
−1

2
∇ · ∇ () + VS

]
ψi(r) = εi ψi(r) avec i = 1, ..., N

(5)

Electronic density computation:

n∗(r) =
N∑

i=1

|ψi|2 (6)

Self-consistency?
Re-use of newly calcu-
lated electronic density
, n∗(r) for next iteration

Exit End

No

Yes

Figure 9 – Kohn-Sham’s method numerical scheme indicating self-consistent field algorithm.

[
−1

2
∇2 + VS(r)

]
ψ1(r) = ε1ψ1(r) on Ω ⊂ R3 (13a)

[
−1

2
∇2 + VS(r)

]
ψ2(r) = ε2ψ2(r) on Ω ⊂ R3 (13b)

n(r) = ψ2
1(r) + ψ2

2(r) (13c)

∇ · (−∇ (VH)) = 4π n(r) on Ω ⊂ R3 (13d)

VS(r) := VH(r) + VEXT(r) + VXC(r) (13e)

VXC(r) = VX(r) +

VC(r)=0︷ ︸︸ ︷
VC(r) = VX(r) =

(
3n(r)

π

)1

3 (13f)

It is well worth mentioning that Equation (13f) deals with the Thomas-Fermi assumption (1927) per-
taining to the exchange-correlation potential. In fact, VXC(r) can be divided into the summation of two
counterparts. The first one can be called as VX(r) and the second one can be named as VC(r). In the
Thomas-Fermi’s exchange-correlation potential, there is only the first counterpart. As pointed out, the
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accurate definition of exchange-correlation function for the molecules is an open problem.

4 Numerical experiments
In this section, the numerical outcomes for Kohn-Sham’s equation for hydrogenmolecule using Thomas-
Fermi mathematical expression (Equation (13f)) are presented as a LDA (Local Density Approximation)
subgroup definition. Basically, the use of the Thomas-Fermi as exchange-correlation potential is limited
to the numerical experiments herein. In Figure 10, the wave functions and electronic density distribu-
tions have been displayed using 3D-FEM as long as adaptive meshing algorithm. The adaptive meshing
technique makes more accurate results during the computations. This issue has been added to all PDEs
of Kohn-Sham’s equations.

(a) (b)

Figure 10 – Kohn-Sham’s equation outcomes using Thomas-Fermi approximation for VXC(r), a) Wave
functions distributions, ψ1 and ψ2 and b) Electronic density on YZ, XY and ZY planes and isosurface
plot for H2.

The extracted outcomes via the finite element analysis demonstrates that it is quite possible to fully
implement the Kohn-Sham equation into the general purpose finite element method packages using the
self-consistency conditions involving the iterative algorithm. The main challenge would be the accurate
determination of eigenvalues using the finite element method. To achieve this assignment, it is required
to use the most relevant eigensolvers and sufficient mesh density at the required zones next to the atom
nuclei. The latter matter can be done via the adaptive meshing. It is quite possible to investigate its
benefits and there are some contributions dealing with this issue in the literature, e.g. [13, 14]

5 Conclusion
The present contribution demonstrate that the 3D-FEM can be used to achieve the solution of the
Schrödinger’s equation as well as Kohn-Sham’s equation. The difficulties stemming from the multi-
dimensional issues of the Schrödinger’s equation have been highlighted and emphasized herein. The nu-
merical solutions via Eigenvalue solvers and adaptive meshing have been utilized to obtain the Energy
levels, 3D-wave function distributions and electronic density for the simple cases in the current study.
This substantiates that the computational mechanics can be applied to solve the quantummechanics pro-
blems. The next contributions should be focused on the accuracy for the numerical solutions and very
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precise exchange-correlation potentials for the molecules. The most interesting aspect is that the Local
Density Approximation and Generalized Gradient Approximations can be easily handled in the present
3D-FEM numerical scheme by means of the MATLAB-COMSOL code applied to reach the solutions
in the present work. This issue can not be readily carried out in the current available DFT softwares.
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Nomenclature
Constants

ε0
1

µ0C2 Permittivity of free space 8.8542× 10−12 in [C2/N.m2]

~ h
2π

1.054571628× 10−34 in [J.s]

e Charge on an electron 1.60218× 10−19 in [C]

h Plank’s constant 6.62606896× 10−34 in [J.s]

M Mass of nucleus in [au]

M Mass of the nuclei in [Kg]

me Mass of electron 9.1094× 10−31in [Kg]

Scalar quantities

ψ Wave function in [−]

εi energy in [Hartree]

E Energy eigenvalue in [J]

f (n(r),∇n(r)) Generalized Gradient Approximation function

n(r) electronic density potential in [−]

r distance between the first proton and second proton in [bohr]

r1 distance between the first proton to the electron in [bohr]

r2 distance between the second proton to the electron in [bohr]

VC second counterpart of VXC in [Hartree]

VEXT external potential in [Hartree]

VH Hartree potential in [Hartree]

VS effective Kohn-Sham’s potential in [Hartree]

VXC exchange-correlation potential in [Hartree]

VX first counterpart of VXC in [Hartree]

Références
[1] N. Zettili. Quantum Mechanics : Concepts and Applications. John Wiley & Sons, 2009.

[2] COMSOL AB. Comsol MultiPhysics : User’s guide, November 2008. COMSOL 3.5a.

[3] COMSOL AB. Comsol MultiPhysics : Matlab Interface Guide, November 2008. COMSOL 3.5a.

[4] COMSOL AB. Comsol MultiPhysics : User’s guide, November 2010. COMSOL 4.1.



23ème Congrès Français de Mécanique Lille, 28 au 1er Septembre 2017

[5] COMSOL AB. Comsol MultiPhysics : Matlab Interface Guide, November 2010. COMSOL 4.1.

[6] A. S. Stodolna, A. Rouzée, F. Lépine, S. Cohen, F. Robicheaux, A. Gijsbertsen, J. H. Jungmann,
C. Bordas, and M. J. J. Vrakking. Hydrogen atoms under magnification : Direct observation of the
nodal structure of stark states. Phys. Rev. Lett., 110 :213001, May 2013.

[7] A. Ishikawa, H. Nakashima, and H. Nakatsuji. Solving the schrödinger and dirac equations of
hydrogen molecular ion accurately by the free iterative complement interaction method. Jounal of
chemecal physics, 128 :,124103, 2008.

[8] E. Tuckerman. The hydrogen molecule ion. 2011.

[9] A. R. Rossi. Molecular structure. 2013.

[10] P. Manninen. 554017 Advanced Computational Chemistry. 2009.

[11] Daniella Kouetcha, Hamidréza Ramézani, and Nathalie Cohaut. Etude structurale et détermination
de la fonction de corrélation de paire du graphène et du graphite. In Colloque Francophone du
Carbone GFEC - 2015, Karellis, Savoie, France, May 2015. (in French).

[12] Dier Zhang, Lihua Shen, Aihui Zhou, and Xin-Gao Gong. Finite element method for solving kohn-
sham equations based on self-adaptive tetrahedral mesh. Physics Letters A, 372(30) :5071 – 5076,
2008.

[13] Gang Bao, Guanghui Hu, and Di Liu. Numerical solution of the kohn-sham equation by finite
element methods with an adaptive mesh redistribution technique. Journal of Scientific Computing,
55(2) :372–391, 2013.

[14] Denis Davydov, Toby D. Young, and Paul Steinmann. On the adaptive finite element analysis of
the kohn-sham equations : methods, algorithms, and implementation. International Journal for
Numerical Methods in Engineering, 106(11) :863–888, 2016.

[15] P. Hohenberg andW. Kohn. Inhomogeneous electron gas. Phys. Rev., 136 :B864–B871, Nov 1964.

[16] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects.
Phys. Rev., 140 :A1133–A1138, Nov 1965.


