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Résumé :
Nous présentons un nouveau modèle statistique pour la turbulence homogène soumise à des distorsions.
Ce modèle améliore et prolonge celui deMons et al. (MCS). Il prend en compte sans modélisation et sans
troncature les termes linéaires dans les équations pour le spectre d’énergie E(k, t) et le déviateur de po-
larisation Z(k, t), qui engendrent le tenseur spectral des corrélations doubles de vitesse en turbulence
homogène arbitrairement anisotrope, en présence de gradients de vitesse moyenne et de rotation d’en-
semble. Seuls les termes de transfert, qui reflètent l’impact dans ces équations des corrélations triples
en deux points, gardent la formulation anisotrope MCS simplifiée à partir d’EDQNM (Eddy Damped
Quasi-Normal Markovian), via une troncature au premier ordre significatif en harmoniques angulaires.
Le nouveau modèle numérique est validé sur les termes qui reproduisent la limite de distorsion rapide
(RDT) non visqueuse, pour le cisaillement tournant, et comparé aux résultats de RDT de Salhi et al.
(2014). L’accord est excellent pour différents rapports de vorticité R = 2Ω/(−S), où Ω est la vitesse
angulaire du repère tournant et S le taux de cisaillement, avec notre schéma numérique qui est très
différent de la méthode des caractéristiques utilisée en RDT et en simulation numérique directe. Ces
comparaisons montrent en outre que le modèle MCS n’est valide que jusqu’à des valeurs faibles de St
dans cette limite linéaire. Cette validation sur la dynamique linéaire est une étape cruciale pour notre
future étude non-linéaire multi-échelles, car cette dynamique est toujours très significative dans le do-
maine infrarouge des spectres d’énergie, même quand elle est globalement marginale dans l’évolution
des grandeurs statistiques en un point.

Abstract :

We propose a new statistical model for homogeneous turbulence undergoing distortions, which improves
and extends the MCS model by Mons et al. (2016). The spectral tensor of double velocity correlations
is predicted in the presence of arbitrary mean velocity gradients, and in a rotating frame. For this, we
numerically solve coupled equations for the angle-dependent energy spectrum E(k, t), that includes di-
rectio nal anisotropy, and the deviatoric pseudo-scalar Z(k, t), that underlies polarization anisotropy.
These equations include two parts : (1) exact linear terms representing the viscous RDT (Rapid Dis-
tortion Theory) solution when considered alone ; (2) generalized transfer terms mediated by two-point
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third-order correlations. The latter are closed by an EDQNM (Eddy Damped Quasi-Normal Marko-
vian) anisotropic technique. Using a truncated expansion in terms of angular harmonics, we express
the spherically-averaged descriptors of the transfer terms in terms of the corresponding descriptors of
the second-order spectral tensor, as done in MCS. However, in contrast with MCS, the complete angu-
lar dependence is kept for solving the linear terms. A first validation of the new ‘linear RDT solver’ is
performed with respect to RDT and DNS of rotating shear flow (Salhi et al. 2014, in which a charac-
teristics technique is used). Results accurately compare in the inviscid RDT limit for typical stabilizing
and destabilizing cases related to various ratiosR of system vorticity 2Ω to shear-induced vorticity−S.
Comparisons also confirm that MCS is limited to small values of St in this linear limit. This paves the
way for a fully nonlinear scale-by-scale and anisotropic study, in which RDT is never globally dominant
for single-point statistics, but is crucial for predicting the largest scales and the infrared range.

Mots clefs : Turbulence, cisaillement tournant, modèle multi-échelle

1 Introduction
The interplay between linear and nonlinear mechanisms can be very complex and subtle in turbulent
shear flows. Rapid Distortion Theory (RDT) of homogeneous turbulence is very powerful for solving
linear operators induced by rotational mean flows [1], but its relevance is limited in principle to short
evolution times, and more specifically to the largest scales of the turbulent flow if a scale-by-scale ap-
proach is performed.

Among various combinations of mean strain and mean vorticity, the case of mean plane shear rotating
in the spanwise direction has various applications in engineering, geophysics and astrophysics. Stabi-
lizing and destabilizing effects of the system vorticity are found in rotating plane channel flows, with
experimental study [2] and simple modelling [3, 4] also valid in atmospheric flows. The homogeneous
rotating shear flow is also a model for turbulent accretion discs in astrophysics, according to the Shea-
red Sheet Approximation (SSA) by [5]. Normal mode stability is governed by the Bradshaw number, or
B = R(R + 1), in which R = −2Ω/S is the ratio of system vorticity 2Ω to shear-induced-vorticity
−S, with S the shear rate. As confirmed by RDT, B < 0 or −1 < R < 0 corresponds to exponential
growth, andB > 0 to exponential decay. Neutral cases are found for bothR = 0 (no additional rotation)
and R = −1 (zero absolute vorticity).

Fully nonlinear DNS were performed by [6] without scale-by-scale analysis, and by [7] for a spectral
analysis. To which extent such DNS results can be used for validating a statistical spectral model, that
could extrapolate them towards very high Reynolds number? On the one hand, this strategy—validation
versus DNS continued by extrapolation—was successful for buoyancy-driven flows, using a generalized
anisotropic EDQNM (Eddy Damped Quasi-Normal Markovian [9]) model for unstable stratification [8].
On the other hand, the model recently validated for shear-driven flow by [10] (MCS for Mons, Cambon
& Sagaut hereinafter) ought to be improved for quantitative and accurate comparisons with DNS : It is
expected that nonlinear mecanisms for energy transfer and return-to-isotropy are satisfactory, but not
the linear mechanisms related to RDT when they are dominant. An improved model is in construction,
and this article gives its first validation in the RDT limit for the rotating shear.

In the following, Section 2 presents basic equations and numerical challenges. Preliminary numerical
results are given and discussed in Section 3. Section 4 is devoted to conclusions and perspectives.
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2 Basic equations and numerical approach
Following Batchelor and Craya, we consider the general case of statistical homogeneity restricted to
fluctuations, in which an extensional mean flow Ui injects energy and anisotropy into the fluctuating
flow via spatially uniform mean velocity gradients Aij :

Aij =
∂Ui
∂xj

= Sij +
1

2
εimjWm, (1)

combining contributions from strain Sij , its symmetric part, and mean vorticityW , that generates its
antisymetric part. In addition, the whole flow—mean + fluctuating—can be seen in a rotating frame with
angular velocity Ω for various applications, such as rotating shear or precessing flows.

Looking at the fluctuating velocity field ui, the most general information on two-point second-order
velocity correlations is given by the tensor Rij(r) = 〈ui(x)uj(x + r)〉, and the related spectral ten-
sor R̂ij(k) obtained by three-dimensional Fourier transform. In this context, our basic state vector for
representing two-point second-order correlations is the set (E , Z), which generates the spectral tensor
R̂ij(k) with all its components but the helicity spectrum (see [7]) :

R̂ij(k, t) = E(k, t) (δij − αiαj) + < (Z(k, t)Ni(α)Nj(α)) . (2)

The set (N ,N∗,α) generates an orthonormal frame for projecting the velocity field in Fourier space
û(k, t), and is closely related to the Craya-Herring frame of reference [13].N and its conjugateN∗ are
the helical modes [14]

N(α) = e(2)(α)− ie(1)(α), α =
k

| k |
, e(1)(α) =

α× n
| α× n |

, e(2)(α) = α× e(1)(α), (3)

in which k is the three-dimensional wavevector, seen in a system of polar-spherical coordinates of polar
axis n, and i2 = −1.

Equations for the state vector (E , Z) are derived from the equation for the divergence-free fluctuating
field, in which the pressure fluctuation is solved and thereby removed from consideration, so that

˙(kE) + 2νk3E + < (kZ(k, t)SijNi(α)Nj(α)) = kT (E)(k, t) (4)

and

˙(kZ)+2νk3Z+kE(k, t)SijNi(−α)Nj(−α)−ikZ(k, t) ((W + 4Ω)·α− 2ΩE) = kT (Z)(k, t), (5)

in which ν is the kinematic viscosity. The overdot corresponds to the advection operator due to the
presence of mean flow :

˙(...) =
∂

∂t
−Amnkm

∂

∂kn
. (6)

The left-hand-sides of both equations (4) and (5) reflect the linear effects of the mean flow, as in viscous
Rapid Distortion Theory, with geometric coefficients that depend on the orientation of the wave vector
α = k/k via helical modes N(±α). ΩE is a special rotation rate induced by the advection operator,
that can be removed from consideration in the special applications used in this article.

The right-hand-sides of both equations gather the contribution from two-point third-order correlations
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mediated by the quadratic nonlinearity of basic Navier-Stokes equations.

2.1 Closure of generalized nonlinear transfer terms
The closure of the generalized transfer terms T (E) and T (Z) in terms of E and Z is performed via an
anisotropic EDQNM procedure, called EDQNM1, used and revisited in [10] and in [15]. Faced with
the high computational cost of solving these equations for all wavevector directions, a second step was
applied to restrict the description to spherically averaged descriptors. This purely technical step amounts
to replacing fully anisotropic E and Z terms by the truncated expansions

E(k, t) =
E(k, t)

4πk2

(
1− 15H(dir)

mn (k, t)αmαn

)
(7)

and
Z(k, t) =

5

2

E(k, t)

4πk2
H(pol)
mn (k, t)N∗m(α)N∗n(α). (8)

These expansions involve the non-dimensional deviatoric tensorsH(dir)
mn andH(pol)

mn which are given by
integrating R̂ij(k, t) on spherical shells of radius k =| k |, so that

ϕij(k, t) =

∫
Sk

R̂ij(k, t)d
2k = 2E(k, t)

(
1

3
δij +H

(dir)
ij (k, t) +H

(pol)
ij (k, t)

)
. (9)

The three contributions, isotropic, directional anisotropy and polarization anisotropy derive, term-to-
term from Eq. (2), in which E(k) = E(k)

4πk2
+ E(dir)(k), with E(k) the classical spherically-integrated

energy spectrum, only present in isotropic turbulence. On the one hand, it is possible to extract from an
arbitrary anisotropic spectral tensor R̂ij the set of spherically-averaged descriptors (E,H

(dir)
ij , H

(pol)
ij ),

in which directional anisotropy and polarization anisotropy are disentangled. On the other hand, it is
possible to reconstruct a part of the full spectral tensor by means of these descriptors using Eqs. (7)
and (8).

It is consistent to express the generalized transfer terms using the same truncated expansion, or

T (E)(k, t) =
T (k, t)

4πk2

(
1− 15S̃NL(dir)

mn (k, t)αmαn

)
(10)

and
T (Z)(k, t) =

5

2

T (k, t)

4πk2
S̃NL(pol)
mn (k, t)N∗m(α)N∗n(α). (11)

A closed system of equations is derived in MCS for the set (E,H
(dir)
ij , H

(pol)
ij ), in which linear terms

in the left-hand-side of Eqs. (4) and (5) give contributions TL, SL(dir)
ij and SL(pol)

ij , whereas nonlinear
contributions yield the above-mentioned T , T

4πk2
S̃
NL(dir)
ij and T

4πk2
S̃
NL(pol)
ij terms. In short, a model

using only spherically-averaged descriptors is exactly derived from the EDQNM1 model in k-vector
space, using second-order truncated expansions just described.

The resulting simplified model MCS is flexible, versatile, and tractable. Its nonlinear part reduces to
calculations similar to those of isotropic EDQNM, and it has been validated for several flow cases, in-
cluding effects of irrotational straining processes (Aij symmetric, possibly time-dependent), plane shear,
and return-to-isotropy when mean flow gradients are removed. On the other hand, the rapid distortion
limit is no longer exact in the MCS model, because the very strong anisotropy induced by RDT requires
higher order angular harmonics than the mere degree 2 in Eqs. (7) and (8). Accordingly, preliminary
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comparisons between DNS and MCS model are not satisfactory for the largest scales, or smallest wa-
venumbers, in which full RDT, that possibly compete with nonlinear backscatter, ought to be captured
with care.

2.2 Numerical procedure, with mean flow advection
The first goal of this study is to numerically solve the system of Eqs. (4) and (5) for various mean flow
gradients, with controlled accuracy for the linear terms and generalized transfer terms given by Eqs. (10)
and (11), still using their spherically averaged descriptors closed by the MCS model.

The main difficulty is to solve the advection operator (6). In theoretical RDT, as well as in fully nonlinear
DNS by [11] and [12], the scheme amounts to following (k, t) characteristic lines, connected with mean
trajectories in physical space, so that the wave vector is rendered time-dependent with Φ̇(k(t), t) =
∂Φ
∂t + ∂Φ

∂km
dkm
dt . A different procedure is chosen here : A finite-difference scheme is used for expressing

the ∂
∂kn

-derivatives, with discretization of the wave-vector consistent with a system of polar-spherical
coordinates. With respect to the method of characteristics, there is no need for interpolation, or ‘reme-
shing’, from k(t)-space to k(t0)-space, and the orientation of the wave vector can be discretized with
high accuracy in Fourier space ; as in EDQNM calculations and shell-models, a logarithmic step is very
convenient for the modulus of the wave number. This numerical procedure is well suited for the (k, t)

development of smooth statistical quantities, although it should be questionable in Rogallo’s pseudo-
spectral DNS, started with randomly initialized velocity modes.

In practice, the finite differences scheme (FDS) we use for discretizing derivatives with respect to km
in the advection term is a sixth-order explicit centered scheme. We have tested accuracy with respect
to the order of the spatial scheme, using different FDS : centered FDS from second- to eighth-order ;
upwind FDS from second- to fifth-order ; Lax-Wendroff FDS. The results of these tests show that enough
accuracy for the sheared turbulence case is obtained only starting with sixth-order centered FDS. The
strongest accuracy constraint for computing ∂/∂km is in the small-scale range (large wavenumbers), due
to the sparse mesh elements distribution there.

Time-marching uses a fourth-order Runge-Kutta scheme, which is perfectly adequate for high accuracy
and sufficient stability.

3 Application to plane shear rotating in the spanwise direction
The mean plane shear is characterized by Aij = Sδi1δj2, the indeces 1, 2 and 3 refering to streamwise,
cross-gradient, and spanwise directions, respectively. In our first application, as in [7], the additional
system vorticity 2Ω is chosen in the spanwise direction.

3.1 Validation and results for linear inviscid dynamics
The inviscid RDT limit is very subtle to capture because, even looking at the left-hand-sides of Eqs.
(4) and (5), with zero right-hand sides, local angle-dependent terms in Fourier space coexist with the
nonlocal advection operator (6), that induces a linear transfer in wavespace.

Without additional system vorticity, the MCS model is already disapointing in this limit. The algebraic
growth of kinetic energy is missed, and exponential growth is predicted instead, as shown on Fig. 1-left.
Looking at the energy spectrum (Fig. 1-right), initialized as in MCS, it is confirmed that spectral energy
is largely overestimated in MCS at almost all scales, except the smallest ones.
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Figure 1 – Inviscid RDT limit,R = 0. Left : time-evolution of kinetic energy from both present (ZCG)
model and MCS model. Right : Corresponding energy spectra at St = 4.
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Figure 2 – Left : time-evolution of kinetic energy for various R = 2Ω/(−S)-ratios, present model.
Right : comparison of results from the present model with those of [7], R = 0.

However, as shown by the two plots of Figure 1, the exact theoretical solution for time-evolution of
kinetic energy and the spectral distribution, is accurately reproduced by our present model (which we
call ZCG), with and without additional rotation.

In Figure 2, typical cases, with different combinations of strain and rotation, are plotted : R = −5

(or Ω = 5S/2, stabilizing, anticyclonic case), R = −1 (or Ω = S/2, neutral, zero absolute vorticity,
as in the central region of a rotating channel), R = −1/2 (or Ω = S/4, maximum destabilization,
anticyclonic case, as in the pressure side), and R = 0 (no rotation). Our ZCG model’s predictions agree
very well with the results in [7], obtained in the same limit (inviscid RDT) by a different characteristics
technique. The comparison is plotted only for R = 0 in Fig. 2-right, for the sake of brevity. The case
R = −1/4 in Fig. 2, not adressed in [7] appears close to maximum destabilization.

4 Conclusions and perspectives
A model that improves the MCS one—at least regarding the treatment of linear operators due to distor-
tions of the flow—has been constructed and validated in the inviscid RDT limit for the rotating shear
flow. In conventional single-point modeling, the accurate capture of RDT is not possible, and only co-
arse approximations are offered. In practical flow cases, however, the linear, or ‘rapid’, terms are not
dominant, as reflected by a moderate value of the typical shear-rapidity term, as SK/ε, or ratio of shear
rate to turnover time scale, e.g. the dissipation rate over the kinetic energy.
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However, RDT, possibly competing with backscatter, cannot be considered as a side effect, even at large
elapsed time, if we want to predict all the scales, in a true scale-by-scale approach. The related chal-
lenge of predicting the largest scales of turbulence, including the infrared range, is illustrated by [8] in
buoyancy-driven flows. In addition, the RDT operators are much more puzzling in the shear-driven flow
case than in [8], because of the presence of the mean-flow-advection operator (see also [15].) Accordin-
gly, we think that the challenge of reproducing RDT is difficult, so that this first validation of a future
accurate model including both linear and non linear terms, is an important milestone towards a fully
nonlinear anisotropic spectral model.

All the equations are given and implemented in a numerical code for this purpose, so that we can expect
a useful compromise between an efficient RDT-solver and the relevant nonlinear structure inherited from
the MCS model. Validation in the nonlinear cases addressed in [7] is the next future step.

Note that our model can be consistently linked to single-point models that are for instance constructed
on advanced rationale, such as the structure-based modelling [16], recently revisited by [17].
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