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Abstract:  

The aim of this work is to investigate changes in material surface microhardness during the different 

stages of fatigue life. Samples of API 5LX65 grade steel were submitted to high cycle fatigue tests in 

which different stages of microhardness changes are observed and then correlated to those observed 

by TEM images. 

Key words: Pipelines; Steel; High cycle fatigue; Fatigue damage, Microhardness. 

 

1 Introduction  

The phenomenon of metal fatigue has a complex nature involving several stages. The main stages 

identified are microcrack initiation and propagation until the final fracture. Surface effects are of 

particular importance for the fatigue phenomenon, since in most cases the surface is the preferred site 

for nucleation of microcracks due to easier slip movements and higher strain amplitudes at the surface. 

According to Ye and Wang [1], a great deal of experimental evidence has proved that fatigue damage 

in the stages prior to nucleation of microcracks is primarily related to the occurrence and development 

of localized plastic-strain concentration at or near the surface of materials during cycling. So, the 

resistance to microplastic deformation on the surface should reflect the fatigue damage resistance. 

Indeed, the hardness of a material shows its ability to resist microplastic deformation caused by 

indentation or penetration and is closely related to the plastic slip capacity of the material. Therefore, it 

is significant to study the resistance to microplastic deformations based on microhardness changes on 

the surface, and the associated accumulation of fatigue damage. This method of studying fatigue damage 

has fundamental importance in the search for a new way to predict fatigue life of metal structures under 

service conditions before macroscopic cracking. 

 

2 Literature Review  

Several authors used microhardness testing as a mean of predicting fatigue damage of metal specimens. 

In 1996, Ye et al. [2] measured the Vickers hardness of ferrite and pearlite at the surface of an annealed 

0.46% carbon steel sample during different numbers of cycles under high cycle fatigue. The authors 

observed that the hardness variation versus the number of cycles was characterized by three periods, 

related to hardness increasing (cyclic hardening effect), stabilizing and decreasing (softening effect). 
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Ye et al. [3] performed a deeper investigation in fatigue hardening/softening behavior through Vickers 

hardness measurements related to changes of micromechanical properties during high cycle fatigue. 

The author showed that it is possible to detect fatigue hardening/softening of a metal by measurement 

of the post-cycled tensile curves. Aiming to write an expression that correlates the total deformation 

experienced by the samples and the hardness measurements obtained in Vickers hardness tests, Ye et 

al. [3] did some assumptions and derivations based on the geometric scheme of the indenter and 

obtained an expression for total deformation as follows (Eq.1): 
 

𝜀𝐻 = ln(𝑠𝑖𝑛𝛼) = 𝜀𝑒
𝐻 + 𝜀𝑝

𝐻 [−
𝐻𝜈

𝐸𝑠𝑖𝑛𝛼(1−𝜈+2𝜈2)
] + 𝜀𝑝

𝐻                                         (1) 

where α is the angle between the surface profile after and before loading, E the Young’s modulus 

and ν the Poisson’s ratio. The presence of the material constants E and ν in this expression results 

from the generalized Hooke’s law. Complete calculus is described in [3]. 
 

Still in the theme of hardness measurement during cyclic loading aiming the analysis of fatigue behavior 

of steel samples, Ye and Wang [1] introduced the concept of continuum damage mechanics (CDM). 

The authors proposed a variable describing pre-nucleation fatigue damage with the objective of studying 

a new approach for non-destructive inspection of fatigue damage, especially at their early stages 

occurring in engineering components under service conditions. Based on experimental evidences and 

using concepts of stress-strain already widely regarded in the literature, Ye and Wang [1] obtained a 

mathematical relation of the hardness (HD) with damage variable (D) for a damage material (Eq.2): 
 

𝐻𝐷 = 𝐶(1 − 𝐷)𝑘(𝜀 + 𝜀𝐻)
𝑚         (2) 

where C is a proportionality constant that takes different values depending on the type of indenter 

used, D is the damage variable representing the deterioration of the material’s properties and 

microstructures under the loading of external forces, k and m are material constants, ε is the plastic 

natural strain, and εH is the strain introduced by the hardness test itself within the indentation 

plastically deformed zone (εH is approximately 0.08 in the case of Vickers indentation). 
 

In terms of the variation of hardness for the isotropic damage case, damage variable (D) can be evaluated 

as (Eq.3): 
 

𝐷 = 1 −
𝐻𝐷

𝐻
           (3) 

where HD and H are the hardness of a damaged material and a non-damaged material, respectively. 

 

3 Material properties characterization  

Uniaxial tension tests were carried out to evaluate relevant mechanical properties of the API 5L X65 

grade steel. Six tension test specimens were machined in the longitudinal direction of the pipe sample 

(Figure 1). Tensile tests were carried in an INSTRON (8802) universal testing machine equipped with 

a 10kN load cell. Tests were carried with a strain rate of 2.64 x 10-4 m/m s-1, at room temperature, 

according to specifications of ASTM E8M-04 standard [4]. The strains were measured with the aid of 

a clip gage. Table 1 presents average mechanical properties obtained. 
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Figure 1: Samples cut off from API 5L X65 grade steel pipe for: (a) tensile tests, where w1 = 20 mm, 

w2 = 30 mm, l = 40 mm, and t = 3 mm; and (b) fatigue tests. 

Table 1: Average mechanical properties for API 5L X65 grade steel. 

  

Young modulus 

(GPa) 

Yield strength 

(MPa) 

Proportional 

limit (MPa)* 

Ultimate tensile 

strength (MPa) 

Ultimate tensile 

strain (%) 

Average 211 ±5 421±8 369±45 517±7 5±0.3 

*Proportional limit is the maximum stress before material yielding 
 

3.1 Fatigue tests  

Fatigue tests were performed in a Schenck machine model PWON [5]. Samples were submitted to room 

temperature high cycle fatigue (HCF) tests under strain-controlled alternating bending loadings 

(sinusoidal waveform) at a frequency of 25 Hz.  

 
Figure 2: Fatigue samples (dimensions in millimeters).  

Fatigue samples were machined from the same pipe used to produce the tensile samples (Figure 1). The 

geometry and dimensions of the fatigue samples are depicted in Figure 2. Samples were submitted to 

electrolytic polishing using a perchloric-based acid solution (standard electrolyte Struers A2) to reduce 

the surface roughness, which could affect indentation measurements. From tensile properties obtained 

for API 5L X65 grade steel and assuming the surface condition factor ka as 0.91705 (grinding surface 

finish) [5], an endurance limit Se of 270 MPa was estimated for fatigue test samples. The Basquin 

equation, which relates the number of stress cycles to failure (N) to the alternating stress (Sn), was 

calculated as follows (Eq. 4): 
 

Sn =872.1 N−0.0953           (4) 

 

 a) 

b) 
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3.2 Indentation tests  

Aiming to study the fatigue damage accumulated in the microstructure of the samples, Berkovich 

microhardness tests were carried out in the samples previously submitted to HCF tests. Instrumented 

indentation tests (IIT) have been performed using a CSM 2-107 microhardness tester. Berkovich 

indenter was used for each sample analysis with maximum loads ranging from 0.2 to 2 N. A dwell-time 

of 15 s was imposed at the maximum applied load, and loading and unloading rates have been set up at 

100 mN/min. The load resolution is 100µN and the depth resolution is 0.3 nm (provided by the CSM 

Instruments Group) [6]. Berkovich indentations were done in 3 different points of the sample, which 

are represented as x in Figure 2. For each point, the machine performed 20 indentation cycles at the 

same location using a progressive loading protocol between Pmin = 200 mN and Pmax = 2,000 mN.  

According to N’Jock et al. [7], during indentation tests, the material can flow under the indenter by two 

different modes of deformation: sinking-in, when the material is pulled down toward the tip of the 

indent, or piling-up, when the material is pushed away from the center of the indent. Consequently, 

corrections proposed by Oliver and Pharr [8] for sinking-in and Loubet et al. [9] for piling-up should 

be made, in addition to other corrections associated with the indenter tip defect as well as the compliance 

of the instrument. Still following N’Jock et al. [7], the authors presented a criterion to determine the 

predominant deformation mode. According to them, for materials for which the ratio between the 

residual indentation depth and the maximum indentation depth reached at the maximum load is higher 

than 0.83, piling-up prevails, while sinking-in is observed when this ratio is lower than 0.83.  

From IIT measurements leading to a load (P) – indenter displacement (h) curve, the hardness H is 

defined as the ratio between the maximum load (Pmax) and the projected contact area (Ac) (Eq.5):  
 

𝐻 =
𝑃𝑚𝑎𝑥

𝐴𝑐
              (5) 

 

The projected contact area (Ac) is a parameter of fundamental importance to the material hardness 

computation, but its calculation is not trivial. For the two different modes of deformation (sinking-in 

and piling-up), Oliver and Pharr [8] and Loubet et al. [9] expressed the contact area Ac by different 

expressions. In this work, the results comprise ratios between the residual indentation depth and the 

maximum indentation depth higher than 0.83, and because of that, Loubet et al. [9] equation was used 

(Eq.6): 
 

𝐴𝑐𝐿𝐴 = 24.56𝛼2 (ℎ𝑚𝑎𝑥 −
𝑃𝑚𝑎𝑥

𝑆
+ ℎ𝑏)

2

        (6) 

where hmax is the maximum indentation depth, S the elastic unloading stiffness, α a constant equal 

to 1.2, and hb the truncation length of the tip defect. 

 

4 Results and discussion  

Fatigue bending tests were conducted under a strain amplitude of 1.7%, corresponding to an alternating 

stress amplitude (σa) of 358 MPa at the sample center (20 mm width), with stress ratios R around -1 

(fully reversed stress). For this stress amplitude, one sample (T2EF08) was cycled up to failure, giving 
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a fatigue life of 30,100 cycles. In addition, the samples T2EF09, T2EF10 and T2EF11 were fatigue 

cycled up to 25%, 50% and 75% of the fatigue life, respectively. Then, indentation tests were performed 

to evaluate hardness changes and fatigue damage accumulation at these four different stages of fatigue 

life 

 Due to the specimen positioning in the fatigue machine, an encastrer condition is produced at line 1 

(Figure 2), i.e. no cyclic loading is applied at this region. Thus, the hardness calculation in line 1 is 

taken as the reference hardness value (H0) for the sample. The smaller width in the center of the sample 

leads to the highest stress amplitude in this region, in which the rupture ends up. Lines positioned away 

from the sample center undergo lower stress amplitudes, due to width increase, resulting in stress 

amplitudes of 335 and 225 MPa at lines 4 and 3, respectively. The hardness variations before and after 

fatigue cycling were evaluated based on the difference between hardness values of lines 3 and 4 (H3 

and H4, respectively) with respect to line 1 (H0). 

Figure 3(a) and (b) show the evolution of the hardness values in relation to the fatigue life of the material 

for the values measured in line 3 and line 4, respectively. Figure 3 shows three successive stages, 

concerning a decrease in hardness values until 50% of the fatigue life of the material, followed by an 

increase from 50 to 75% of the fatigue life, and the last stage of sharp decrease in hardness values. It is 

supposed that a connection could exist between them and the four phases of fatigue damage 

mechanisms, which can be identified as microcrack initiation (nucleation), microcracking, macrocrack 

propagation, and final fracture.  

 (a)  (b)  

Figure 3: Evolution of hardness values during fatigue life for (a) line 3 and (b) line 4 measurements. 

In Stage 1, the hardness decrease can be associated with the movement and multiplication of 

dislocations and rearrangement of the initial dislocation network. Part of the initial dislocation network 

Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 
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is produced during the pipe manufacturing process by cold working. Sample preparation (machining, 

grinding and polishing), which is also likely to induce some level of residual stresses, may also influence 

the initial dislocation arrangement [10]. At the early stages of fatigue, microstructural changes related 

to the movement and reorganization of dislocations are expected, leading to a reduction of 

microdeformations and consequently, a softening behavior of the material. In Stage 2, the hardness 

increase could be related to the process of microcracks initiation and propagation. The multiplication 

of dislocations and microdeformations can be associated with material hardening. In Stage 3, hardness 

decrease (softening) could be attributed to the relaxation of microstresses due to macrocrack initiation 

and propagation, preceding final failure. Further analyses will include macrocrack observations. 

 
Figure 4: Dislocation network obtained by TEM from specimens fatigued with an applied alternating 

stress of 319 MPa (R = -1) to (a)-(b) 20.000 cycles and(c)-(d) 120.000 cycles [3]. 

In a previous work [11], transmission electron microscopic (TEM) images for a similar material (API 

X60 steel) also showed different stages of changes in the microstructural and they are correlated to those 

observed by indentation. Figures 4 (a)-(b) and (c)-(d) present TEM images obtained from analyses of 

lamellae produced from API X60 steel samples fatigued to 20,000 and 120,000 cycles, respectively. 

According to Pinheiro [11], a qualitative evaluation of dislocation structures observed in these images 

suggests that the dislocation density increased between 20,000 and 120,000 cycles. From comparison 

of images from Figures 4 (a)-(b) and (c)-(d), it is possible to observe the fatigue damage effect, 

considering how nested and close to each other are dislocations in Figures 4 (c)-(d), fatigued to 120,000 

cycles, with respect to Figures 4 (a)-(b), fatigued to 20,000 cycles [3]. This multiplication of dislocations 

and increase in microdeformations was equally observed in the Stage 2 of the hardness variation (Figure 

3).  
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5 Conclusions  

The aim of this ongoing work is to evaluate fatigue damage of pipeline steels through microhardness 

testing. Different stages of changes in microhardness are found and they are correlated to those observed 

with transmission electron microscopic (TEM) images from experimental tests performed with a similar 

material. This correlation could help to corroborate the X-ray diffraction results obtained in a previous 

work [11] and then, recommend this non-destructive technique as the base of the method for predicting 

fatigue life of steel structures. Further experimental tests are being carried out in this ongoing work. 

The obtained results will be considered in the proposal of a new methodology to predict fatigue life of 

metal structures under service conditions before macroscopic cracking. 
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