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Résumé : (16 gras)
Ice accretion on aircraft structures reduce flight safety. Experimental set-ups to design de-icing systems
are costly and complex. Various ice simulation codes existing today are mostly a single shot, where the
ice layer is assumed to form without affecting external flow. A more realistic view is where the defor-
med ice shape affects the external flow. Few multi-step icing codes exist but require manual remeshing
techniques. In this study we propose a method that would allow for a full transient solution where defor-
mation does not require remeshing. Namely, the Level-Set method is developed within the icing model
to trace the deformed geometry, and to serve as an implicit reference to the solid boundary.

Abstract :

The Level-Set (LS) framework is introduced to model the ice accretion on aircraft structures. Widely
used two-dimensional and 3D icing models fail to preserve and reply to current needs. The level-set
disposition permitted a fully multiple layer ice accretion model : multi-step ice accretion simulation.
Wherein, the solid boundary is treated by a penalization method or an immersed boundary method
(IBM)-LS. In this fashion, the solid body is defined through its level-set function. Consequently, the air
flow is computed by the penalized RANS-equations with wall laws. And accordingly, droplet distribution
and impingement rate are computed by an IBM-LS Eulerian approach, in which droplets are allowed to
impinge on a layer of cells defined by the LS function using an IBM formulation.

Mots clefs : Multi-Step Icing Simulation, Level-Set, IBM

Introduction (16 gras)
Icing effects can reduce the flight safety under certain weather conditions. According to the US National
Transport Safety Board, icing is one of the major causes of flight accidents ([1]). Supercooled water
droplets present in clouds impinge on the surface of aircraft structures. They either solidify totally on
impact or partially then create a thin liquid film runback depending on the flow temperature and speed
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hence, creating dry rime ice or glaze wet ice respectively. Low speeds and low temperatures cause dry
rime ice formations, while higher flow speeds and temperatures lead to glaze wet ice formations. Typical
forms of rime and glaze icing are shown in Fig. 1. Consequently, these modified geometries induce large
aerodynamic degradations. Designing an adequate de-icing mechanisms requires full knowledge of the
icing phenomenon itself. Icing experimental study cannot exceed the scope of a handful of simple cases
due to complexity and cost. Consequently the use of computational fluid dynamics is strongly justified.

Ice accretion simulation codes used today by aerospace industry assume the icing process to be broken up
into four steps : single phase air flows around the wing transporting water suspended droplets ; droplets
impinge into the surface generating a liquid or dry film exchanging energy with the surface accreted
to shape the final form during a certain exposure time. Air flow is usually based on 2D inviscid panel
methods coupled with an empirical boundary layer method for heat transfer calculations [2]. Following
that, the droplets trajectories are traced using a Lagrangian formulation. Then, the so-called Messinger
model is used to evaluate the energy exchange in the liquid film [3]. Having calculated the ice thickness,
the new geometry is obtained. However, this process is usually assumed to occur on a single step (single
shot) considering that the time scale of the icing process is very long compared with that of the air flow.
However this one-way coupling process can be repeated for portions of the required exposure time [4]
but still with decoupled time scales.

The current tendency to improve the model is to use Reynolds-Averaged Navier-Stokes (RANS) equa-
tions for the air flow such as in NASA’s LEWICE3D [5], FENSAP-ICE of McGill University [6],
CANICE2D-NS developed at École Polytechnique Montréal [4], and ONERA’s ONICE3D [7]. To get
the most of such a model based on the RANS solvers, the droplet trajectories can be modelled using an
Eulerian formulation as introduced by ([8]). This is the case of several icing codes ([9, 10, 11, 7, 12, 13,
14]).

To tackle full 3D configurations, traditional 1D Messinger model is being gradually replaced by a PDE
formulation in [15] and [16]. Many other sub-models for the runback water film exist but are out of
the scope of our current study. One of the most important factors affecting he ice accretion is the heat
transfer. In FENSAP-ICE and ONICE3D it is determined with the RANS flow solver instead of the
classical empirical boundary layer method.

To generate the final geometry however, mesh deformation methods have been employed for multi-step
icing calculations as in [16] and [7]. Such techniques are usually easy to implement and were ergo favou-
red. However, ice formation produces stretched cells and badly intersected cells which require specific
treatments. These problems are intensified for 3D configurations for which a time-consuming manual
remeshing is usually needed. Therefore, inefficiency of these mesh deformation algorithms requires the
introduction of a different approach. Such approach must maintain a good quality of the grid especially
in the boundary layer region.

The current work is presented as part of an effort to develop a new approach in ice accretion simulation.
This new approach should overcome some of the limitations, and most importantly, should inspire and
propose Quasi-non-Steady ice accretion abilities. One promising candidate is the Level-Set function
which was first introduced by [17] and [18]. In a Level-Set disposition the interface is defined implicitly
via a passive scalar function. This function is set to zero at the interface, positive outside and negative
inside. The Level-Set have been used by [19] to evaluate the ice shedding trajectories. In this study
however, the Level zero represent the evolution of the ice/air interface. Also, The negative zone would
represents the accreted ice and one can solve a heat transfer equation in this subdomain. Likewise, the
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positive side represents the external flow zone. By respecting a very finemesh around the interface a high
quality flow is obtained. The mesh in question does not need be a body fitted mesh and distance normal
to the wall can be arbitrary. Such embedded-grid method maintains the same Eulerian formulation of
PDEs, overcoming meshing issues. T embedded-grids can be performed using structured grids like in
[20, 21, 22]. Wall boundary conditions can be treated by a penalization method, in which they are treated
as impermeable media in the so called Brinckman-Navier-Stokes equations. It can be also treated in an
IBM framework, wherein field values based on the boundary conditions are imposed on a layer of cells.

In previous papers [23, 24], the four modules simulating the ice accretion were developed and validated
in the NSMB (Navier-Stokes-Multi-Block) flow solver. These four modules are still being optimised.
The first module is the compressible Navier-Stokes solver for the air-flow. The penalization method is
used at this module to reproduce the wall boundary. The droplet module is solved using total variation
diminishing schemes via deferred correction and a local time stepping scheme. The wall boundary is
reproduced using an IBM-LS formulation. The third module consists of a PDE system to solve the
energy balance evaluating the mass of ice on the surface. The last module uses the Level-Set framework
to advance the iced surface. The implementation of wall laws to model the turbulent boundary layer is
still under progress.

Numerical method and governing equations
To get the most out of such model, it is developed in the NSMB solver[25]. Both compressible and
incompressible RANS solvers exist within NSMB. The mesh is structured, multi-block, parallelized
in MPI with grid motion techniques available. Chimera grids and Immersed boundary methods are
available as well.

Methodology
A single icing step is assumed to be broken up into 4 steps :

> Single phase turbulent compressible air flows.

> Water droplets are transported then impinge into the surface.

> The liquid water film on the surface reaches a thermodynamic balance.

> The geometry is deformed by the accumulation of freezing water.

In a multi-step icing this process is assumed to repeat a number of intervals. The time scale of ice
formation is much higher than the time scale of air flow. Consequently this type of one way coupling is
sufficient.

Penalized compressible flow
In a Level-Set disposition the solid body is defined implicitly by the zero level. It is a known practice to
set the level-set function to the signed distance function [18, 26] for its desirable properties. It was de-
monstrated that initializing the Level-Set function to a signed distance function increases the numerical
accuracy compared with a simple Heaviside function. A penalty term in the NS equations enforces the
wall boundary condition at the desired location [20, 27]. The solid body is considered a porous medium
with very small permeability. The penalized compressible flow equations take the following form :
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∂ρ
∂t +∇ · (ρu) = 0

ρu
∂t +∇ · (ρu⊗ u) = ∇ · π + 1

ηχs (ρu− ρus)

ρe
∂t +∇ · ((ρe+ p)u) = ∇ · (πu + q) + 1

ηθsχsρ (ε(T )− ε(Ts)) + 1
ηχs (ρu− ρus) · u

(1)

where ρ is the density, u the velocity, e the specific total energy, p the pressure, q the heat flux, and π the
stress tensor. The new terms at the right hand side represent the penalty terms where 1

η is a penalization
parameter set to high values, andχs is the characteristic function of the solid. This characteristic function
is a Heaviside function computed from the signed distance level-set function, and is smeared out at the
interface.

Modelling of the droplet Field
As stated earlier a Eulerian approach was developed for the droplet transport. It solves a droplet velocity
field and a volume fraction distribution in the complete domain. Droplets are considered as a distribution
of spheres divided into a number of groups (bins) each with a mean valued diameter (LANGMUIR "D"
dimensionless distribution). Under high Reynolds numbers the droplets flatten to disks. Many other
assumptions are mentioned and justified in [24]. The governing equations for the conservation of mass
and momentum are as follows : all field variables are non-dimensionalized


∂α
∂t +∇.(αu) = 0

∂αu
∂t +∇. (αu⊗ u) = αCDRed

24K (ua − u) + α
(
1− ρa

ρ

)
1
Fr2

g

(2)

where α is the water volume fraction, u the velocity field of droplets, ua the velocity of air, ρ the density
of water, ρa the density of air, g the gravity vector, K = ρdU∞/18Lµ is an inertia parameter, L the
reference length, and d the median diameter of the droplets. Red is the droplets Reynolds number and
is defined based on the slip velocity between the air phase and the droplets.

Red =
ρd|ua − u|

µa
(3)

The drag coefficient of the droplets CD is given empirically as given by [28]. Many other empirical
correlation are proposed for flattened droplets. In these cases the drag coefficient is a combination and
is given as, CD = CDsphere

+ ε(CDdisk
−CDsphere

), where ε = 1− (1−0.007We0.5)−6 is a function of
the Webber Number. The Webber Number measures the relative importance of the fluid’s inertia against
the surface tension and is given by We = ρ|ua − u|2MVD/σw. Consequently, at low Re the We is
low and so is the parameter ε and the drag is that of a sphere. The opposite is true for higher Re where
the drag is that of a disk.

Droplets are allowed to impinge on the surface which resembles an outlet boundary condition, but if
droplets do not approach the surface, in the shadowed region near the trailing edge it should be treated
as a wall for the velocity field and the concentration. Consequently, a condition is checked to evolve the
boundary condition based on the field variables. This condition is the velocity field times the surface
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normal vector u · n. If positive "wet zone" the boundary should allow droplets to pass and thus is
Neumann type, and if negative "shadowed dry zone" no additional droplets are introduced resembling a
Dirichlet boundary condition. The ability of the configuration to capture incoming droplets or the droplet
impingement rate in an Eulerian representation is given by :

β = αu.n (4)

For a distribution of droplet diameter, the distribution is split into a number of groups each with a mean
diameter and each with a weight ωi. The transport equation is solved for each bin size separately and in
the end the overall impingement rate is evaluated by the weighted average and is given by :

β =
∑
i

ωiβi (5)

The droplet transport equation is discretized in space using finite volume method. A first order scheme,
blended upwind and central differencing scheme, and a 3rd order total variation diminishing scheme
are all available. A non orthogonality correction is also available to increase the performance when
using poor grids. The time scheme is implicit and is found to be stable for very high courant numbers.
Consequently, a local time stepping scheme is used. A wide range of linear solvers exist along with the
full compatibility with PSBLAS library. The geometry and mesh are multiblock and parallelized using
MPI, and chimera overset grids techniques are available.

All of the above is valid for body fitted grids. However, in an embedded-grid technique the boundary
condition should be treated differently. The use of penalization method might seem a simple choice.
However, keeping in mind the evolving impingement boundary condition, the penalization algorithm
gets complicated. The droplets should be allowed to impinge on the surface when u ·n > 0 and thus this
part of the surface should not be penalized. Whereas on the trailing edge where u ·n < 0 the momentum
equation should be penalized. Penalizing the flow slows it down but mass is always conserved without
the existence of a real outlet boundary where mass is free to leave. As a consequence, the droplets would
get remitted into the outside flow which is not realistic. This problem can be overcome by introducing
a real solid wall inside the solid geometry. In other words, one should start with a body fitted mesh
with a real solid interface. Then, deformed using the level-set advection equation shown in the following
sections. The inside zone will be penalized for the air flow, and free for the droplets which will flow in
and impinge into the real initial solid interface as shown in Fig. 2.

However this method fails quickly for complex deformed geometries. This motivated the use of an IBM
formulation to capture the droplets at the zero level interface. [29] proposed an IBM impingement tech-
nique, and showed its efficiency. We propose coupling the IBM technique with the level-set formulation.
In the wet zone u ·n > 0 we impose the boundary condition on a layer of cells. One can choose the first
inner layer of cells and thus a Ghost Cell IBM formulation. One can also use the first outer layer. This
part is further discussed in the following sections (IBM-LS Technique).

Thermodynamic modelling of the liquid film
To evaluate the mass and energy balance of the liquid film, one need to solve the mass and energy conser-
vation equations. The flow solver evaluates the wall shear stress τwall and the heat transfer coefficient
hc. The droplet transport module returns the impingement rate β and the droplet velocity field u. The
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PDEs used are based on the Messinger model [3], and the Shallow water equation. The mass and energy
conservation equations are solved for each cell located on the wall. The model proposed by [16] is the
following : 

∂ρwh
∂t +∇.(ρwūfh) = ṁimp − ṁevap − ṁice

∂ρwCwhT
∂t +∇.(ρwCwūfhT ) = q̇imp − q̇evp − q̇ice − q̇cnv

(6)

where h is the water film height, ρw the water density, Cw the specific heat of water, T the surface
temperature in Celsius, ṁevp the mass rate of evaporation, ṁimp the impinging mass rate of water
droplets and ṁice the resultant mass rate of ice accretion. q̇imp is the heat rate of impacting droplets, q̇evp
the evaporating heat rate and q̇ice the heat rate of freezing water. The main contribution in the energy
balance comes from the heat convection term q̇cnv.

The mass rate of impinging droplets is given by ṁimp = LWC · V∞ · β, whereas the evaporating mas
rate is given by a parametric correlation developed by [30]. The energy rates are given by :

q̇imp = ṁimp

(
CwT∞ + |u|2

2

)
q̇evp = ṁevp

(
Le+Ls

2

)
q̇ice = ṁice (CiT − Lf )

q̇cnv = hc(T − Trec)

(7)

where Trec is the adiabatic wall temperature,Ci the specific heat of ice,Le the latent heat of evaporation,
Ls the latent heat of sublimation and Lf the latent heat of fusion.

ūf is defined as the mean velocity of the water film. And is thus given by [6] :

ūf (x) =
h

2µw
τwall(x), (8)

where τwall is the wall shear stress, x the wall surfaces coordinates and µw the viscosity of water.

Moreover the following compatibility relations must be verified [6] :


h ≥ 0,

ṁice ≥ 0,

h · T ≥ 0,

ṁice · T ≤ 0.

(9)

These relations state that water depth h and mass of ice ṁice can only be positive. On the other hand
h · T ≥ 0 states that the water can only exist when the film temperature is higher than the freezing
temperature of water at 0◦C. And the last condition is the result of the third where water freezes only at
temperatures lower than 0◦C.

Eq. 6 is discretized via a finite volume method with a Roe scheme. At each node i a semi-discrete system
is obtained :
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Ωi

(
ρw

∂hi
∂t − Sh,i

)
+
∑
j 6=i φ

Roe
h (i, j) = 0

Ωi

(
ρwCw

∂hiTi
∂t − ShT,i

)
+
∑
j 6=i φ

Roe
hT (i, j) = 0

(10)

This model have apparently three unknowns with only two equations. These unknowns can be reduced
to two by defining three types of surfaces :

— A dry surface, for which h = 0 −→ h · T = 0

— A wet surface, for which T = 0 −→ h · T = 0

— A liquid surface, for which ṁice = 0 −→ ṁice · T > 0

For each case, several terms disappear, and since the type of the surface is unknown a process of trial
and error is used. An educated guess is chosen based on initial values, then the compatibility relations
are verified. If one of the compatibility relations is not satisfied we switch to another surface type as
shown in Fig. 3. The system is solved using explicit Runge-Kutta scheme and is parallelized with MPI.

Level-Set function
The Level-Set approach was developed in [24] to track the ice air interface evolution. The interface is
represented implicitly by the zero level of the Level-Set function Φ. The Level-Set equation is set as the
signed distance function [18]. A signed distance function is given by : |Φ(−→x )| = d(−→x ). It is initialized
in the computational domain as follows :

— Φ = d, in the outside zone (air)
— Φ = −d, in the inside zone (ice,solid)

The evolution of the interface is achieved by solving the so-called Level-Set advection equation :

∂Φ

∂t
+ v∇.Φ = 0 (11)

where v is the Level-Set velocity field. This velocity is evaluate by assuming that water freezes normal
to the wall vwall with the following relation :

vwall =
ṁice

ρice
.n (12)

To compute the Level-Set velocity field v, the wall velocity is propagated perpendicular to the wall.

In [24] we used a first order scheme in time. Although such scheme is expected to be dissipative it
was found to be sufficient in the context of a single step icing model. However for a multi-step icing
formulation where the mesh is not sufficiently refined in the Level-Set path we seek a higher order
scheme. We observed a small mass loss in sharp deformed parts of the geometry due to dissipation.
We first tried the method proposed by [31], where the time scheme is not purely implicit but an inflow-
implicit/ outflow-explicit. However, no improvements on the dissipation were observed, since staying in
the implicit context introduces a dissipative viscosity. The scheme is still under development to check for
the capability of higher order spatial schemes on reducing the dissipation due to the attracting features
of an implicit representation.

At the same time a fully explicit scheme is being developed and optimised. A third order Runge-Kutta
scheme (RK3) is utilized and is coupled with a Weighted Essentially Non-Oscillatory spatial scheme.
This choice was justified by many researchers for its ability to treat hyperbolic equations. We use the
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formulation proposed by [32] along with the one proposed by [33] where he proposed a modified version
of the classicalWENO scheme. One important factor of the Level-Set function is being a signed distance
function. Such a task is difficult at the initialization step, and to make it worse this property gets deterio-
rated instantly after advection. A numerical method was proposed by [18] to recover |Φ(−→x )| = d(−→x ).
One significant feature of a signed distance function is that |∇Φ| = 1 and the normal direction is simply
n = ∇Φ. Consequently, the steady state solution of evolvingΦ using Eq. 13, would reduce to the desired
|∇φ| = 1 :

∂φ

∂t
+ |∇φ| = 1 (13)

This reinitialization equation is rewritten in another format to allow for a conservative finite volume
discretization :

∂φ

∂t
+ sign(φ)

∇φ
|∇φ|

· ∇φ = sign(φ) (14)

Where the sign(φ) function is approximated numerically by the smooth function :

sign(φ) =


−1 φ < −ε

φ√
φ2+ε2

|φ| ≤ ε

1 φ > ε

(15)

The same schemes used for the Level-Set advection were used for the reinitialization equation. Implicit
and semi-implicit schemes resulted in poor results. On the other hand, explicit (RK3) schemes were
more capable of reproducing the required features. [33] showed that the reinitialization did not reduce the
dissipation on the contrary, it increased dissipation. He further attributed such behaviour to the smoothed
sign(φ) function. [34, 18] suggested the use of another function which was initially proposed by [35]
written as :

sign(φ) =
φ√

φ2 + |∇φ|2ε2
(16)

Thus we propose using an implicit Level-Set advection scheme since the dissipation is minuscule taking
into account the simplifications used in modelling the droplet impingement and ice formation. However,
an explicit (RK3), HJ WENO scheme is used for the reinitialization using Eq. 14 and 16, to initialize
the signed distance function, and to restore it at the end of each ice layer (at the end of advecting Φ).

Other important functions related to the Level-Set are the Heaviside function H(φ), the solid charac-
teristic function χs, and the Dirac function δs. The Heaviside function is used to calculate the solid
characteristic function which are both given by :

H(φ) =


0 Φ < −ε
0.5 (1− (Φ/ε)− sin(πΦ/ε)/π) |φ| ≤ ε
1 φ > ε

(17)

χs = H(−Φ) (18)
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The Dirac delta function δs is set to one at the interface and zero elsewhere. Mathematically the Dirac
delta function is the normal derivative of the Heaviside function. Consequently, it is smoothed out at the
interface.

One important ingredient is still missing and that is the propagated Level-Set velocity field. When using
embedded-grid techniques propagating the velocity in the normal direction as proposed before is not an
easy task. An additional PDE can be solved to propagate such velocity in the normal direction [31, 18]
as shown in Eq. 19

∂w

∂t
+ sign(φ)−→n · ∇w = 0 (19)

whose final solution gives the required Level-Set velocity v = wsteady. To put the finishing lines we
explain in the following section the IBM-LS technique used for the impingement and other implications.

IBM-LS Technique
We impose field variables on the first outer layer cell centres based on the required boundary condition.
Consider the case shown on Fig. 4, where the required BC will be imposed on the centre of cells marked
with an x and are henceforth called IB points. This procedure can be summarized as follows :

(1) First we search the points that fall on the interface by comparing sign(φ) with neighbours in
all directions. These points are saved initially with their indices and the outward direction as the
opposite to the point that had a different sign. In Fig. 4 point i has a neighbour with different sign
to the left and thus the outside direction is to the right.

(2) An image point (ip) is generated at a distance ∆ from the IB point through the normal direction.
The normal direction is directly available in a Level-Set framework ans is given by n = ∇φ.

(3) Following that we search for the closest point (cp) starting from the point located in the outer
direction.

These are all the ingredients we generate initially. Steps 1 to 3 are repeated only when treating a modified
geometry, or in other words for a different ice layer. The above ingredients can be used by the droplet
module to impose impingement BC, and can also be used by the flow solver to construct wall laws.

The state vector is extrapolated from the closest point (cp) to the image point (ip) by the following
formula :

Qip = Qcp +∇Qcp · −→r (20)

where−→r is the vector pointing from point (cp) to point (ip), and is equal to the distance times the normal
vector −→r = −∆ · n.

Based on the state vector and the required BC type we then calculate the required state vector at the IB
point. For a Nuemman BC we impose QIB = Qip to obtain a zero normal gradient. For a Dirichlet
BC however, the value is extrapolated as QIB = Qip ∗ φip/φim. [36] proposed a higher order scheme
by adding a projection point, a farther image point, an extra image point, and a mirrored point. But
we currently stay with a first order extrapolation scheme. For the turbulent wall-modelling we are still
studying different models. One promising model is the one proposed by [37].

Consequently, the IB points are not included in the solution of the conservation equation but are imposed
explicitly. Interior points are decoupled and have no effect on the flow.
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The two ingredients required by the Thermodynamic module, namely : the wall shear stress, and the heat
transfer coefficient, are to be accuired by this IBM-LS formulation but are still under developement.
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Figure 1 – Typical forms of icing simulated in NSMB. On top : rime icing on a NFL0414 airfoil at
Re = 6.95 × 106, T = 257.59K. On bottom : glaze icing on a SA13112 airfoil at Re = 3.91 × 106,
T = 263.19K.

Figure 2 – Penalized air flow and free droplet flow, Streamlines shown are droplets trajectories.

Figure 3 – Trial and error procedure at each wall node i.
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Figure 4 – Schematics of the computaion domain in an IBM-LS framework. Black squares are points
in the physical flow domain, points marked by x, are the IB cells layer, circels are points inside the solid
body given by negative φ, and hexagons represent the image points.
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