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Résumé :
Les écoulements au sein des assemblages combustibles des coeurs de réacteurs à eau pressurisée

(REP) sont majoritairement alignés avec les axes des crayons. Cependant des écoulements secondaires
existent dans les plans orthogonaux à ces axes et jouent un rôle essentiel dans la redistribution ther-
mique du coeur. Ces écoulements présentent des réorganisations spontanées qui semblent comparables
aux changements de phase observés entre des états méta-stables de l’atmosphère de l’hémisphère Nord
(Corvellec [5]). Pour avancer une explication de ce phénomène, nous calculons des états d’équilibre
des équations d’Euler en 2D à partir d’un problème variationnel consistant à chercher le minimum de
l’enstrophie totale tout en conservant l’énergie cinétique et la circulation dans le domaine de calcul.
Cette approche est liée à la théorie MRS ([7, 9]). Nous obtenons ainsi les états d’équilibre les plus
probables en fonction des paramètres de contrôle et de la géométrie du problème. Nous avons résolu
numériquement ce problème et obtenu les différents

::::::::::
différentes

:
courbes caloriques et

:::
les

:
diagrammes de

phase. Une bifurcation entre une solution à un tourbillon ("zonale") ou à deux tourbillons ("bloquée")
a été identifiée, ce qui semble confirmer l’existence d’états meta-stables dans des écoulements autour
d’un obstacle central.

Abstract :
Rod bundle flows inside nuclear cores of pressurized water reactors (PWR) are mainly aligned with
the direction parallel to the rods. In the planes orthonormal to this direction, some secondary flows oc-
cur and play an important role in the thermal mixing characteristics. These flows exhibit spontaneous
reorganisations that seem comparable to the phase transitions observed between meta-stable states
of the Northern Hemisphere atmosphere (Corvellec [5]). In order to put forward an explanation of
this phenomenon, equilibrium states of the 2D Euler equations are computed from a variational pro-
blem consisting in minimizing the total enstrophy function (related to entropy) while conserving kinetic
energy and circulation inside the domain. This method can be related to MRS theory ([7, 9]). We obtain
the most probable equilibrium states depending on control parameters and geometry here restricted to
the representative configuration of a ring-shaped domain. We have solved numerically this problem
and obtained the different caloric curves and phase diagrams. A bifurcation between 1-eddy (’zonal’)
and 2-eddy (’blocked’) solutions has been identified, confirming the existence of meta-stable states in
flows containing a central obstacle.
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1 Introduction

The prediction of the thermal mixing in Pressurized Water Reactor (PWR) fuel assemblies is of major
importance in nuclear reactor safety assessment aimed at evaluating the thermal conditions during the
reactor normal operation. The core of a PWR is constructed from an array of nuclear fuel rods positio-
ned by support grids at specific axial distances. Mixing vanes are placed on the top edges of the grids
to enhance the heat transfer in subchannels. The water flows mainly in the direction parallel to the rods.
Due to the mixing vanes, some secondary flows occur in planes orthonormal to the axial direction. For-
ced convection is used to transport the thermal energy from the surfaces of the rods to the bulk of the
fluid. The flow field in the fuel assembly is very complex due to the geometry of the subchannels and
the high axial component of the velocity field relative to the secondary flows. Starting from the mixing
grid, both the cross flow imposed by the vanes and the turbulence intensity develop axially. Turbulence
is very strong just downstream of the mixing vanes, and it decays as the flow travels downstream of
these vanes. The boiling point margin is reduced with distance from the mixing vane due to the reduc-
tion of both the turbulence level and the cross flow velocity. It is then crucial to understand and predict
the flow field behaviour in the far wake of the mixing grids.
To analyze such a developing flow field, an experiment performed in the AGATE facility (see [6]) has
been simulated with the Trio_U1 code [1]. The AGATE experiments have originally been designed to
characterize different types of mixing grids. The test section consists of a 5×5 tube bundle and a mixing
grid, which are placed within a metallic channel of a quadratic cross section. The specific point we are
interested in is that the experiment shows a reorganization of the cross flow not visible numerically.
As shown on Figure 1, the transverse flow displays large-scale structures, which right after the mixing
grids are aligned with a diagonal of the square box with a 45◦ angle. Surprisingly, this transverse flow
was observed to spontaneously rearrange itself further downstream, apparently along the other diagonal
of the square box with a 135◦ angle. The simulations fail in reproducing this flow field reorganization
experimentally observed from a certain distance downstream far from the grid. This rearrangement has
important consequences on the rod bundle cooling efficiency. However, no explanation of this pheno-
menon was advanced by previous experimental and numerical studies. This is the motivation of the
present work.

A remarkable feature of the transverse flow is the relative decorrelation between the velocity component
parallel to the rod axes and its components in the transverse plane, at least in the bulk of the flow (out
of the boundary layers). This feature allows us to assume that the 3D flow behaves in a first approxima-
tion as a "transported 2D flow". Following this assumption, the flow in the transverse plane (hereafter
designated as the transverse flow) abides by 2D fluid dynamics. Furthermore, because of the high value
of the considered Reynolds number (Re ' 105) and considering

:::
the

::::
fact

:::::
that we exclude the boundary

layer, we neglect the viscosity and place our study in the theoretical frame of the 2D Euler equations.
The large-scale flow patterns shown in figure 1 exist during time scales much larger than the turbulence
time scales, and they seem to drastically shift between one another. These characteristics are reminis-
cent of meta-stable phenomena typically observed for example in 2D geophysical flows [5] and studied
by statistical mechanics tools. Such 2D geophysical flows include the Jupiter Red Spot [?], the Ku-
roshio path and the Gulf Stream [10]. The aim of the present work is to make an analogy between
the reorganisation of the flow field observed in the AGATE facility and phase transitions between dif-

1The Trio_U code has recently been renamed TrioCFD [1].
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FIG. 1 – Large coherent flow patterns appearing in the AGATE experiments, right after the mixing grid (left) and further
downstream (right). From Bieder et al. [2]

ferent equilibrium states obtained through the sufficient condition of minimal enstrophy under specific
constraints (i.e. through the Minimal-Enstrophy Principle, which can be related to other theories such
as MRS by [7, 9]).

In Section 2, the theoretical framework of the study is presented. Section 3 details the numerical method
used to compute solutions of this variational problem for given control parameters and in a non-trivial
domain. Some solutions obtained for various geometrical domains are presented in section 4. Classical
results are first obtained in order to show the validity of the numerical method. Calculations are then
performed on a non-simply connected domain, which adds the constraint of the circulation around the
central obstacle and induces new bifurcation possibilities.

2 Theoretical framework
We consider the two-dimensional vorticity equations (derived from the incompressible Euler equations)
written as 

∂ω

∂t
+ u · ∇ω = 0,

ωz = ∇× u,

(1)

where ω is the vorticity, u the velocity field, and z a unit vector normal to the flow. Let ψ be the stream
function defined as

−∆ψ = ω. (2)

The 2D Euler equations admit an infinite number of steady states of the form ω = f(ψ) where f is an
arbitrary function. These solutions are obtained by solving{

−∆ψ = f(ψ) = ω

ψ = a ∈ R, on the domain boundary.
(3)
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The idea is to determine, among the infinite number of steady states, those ones that are stable, according
to the equilibrium statistical theory developed in [7, 9] and [8].
The exact vorticity field can be decomposed as a sum of a local average (coarse-grained) vorticity ω and
a fluctuating term containing the very small scales that cannot be numerically computed. Ultimately,
the vorticity level distribution will be given by CFD simulations. The problem is solved in the variable
ψ, then the solutions (named macroscopic solutions), denoted by ψ verify −∆ψ = ω and contain only
large-scale fluctuations.

n

n

ΩΓ0

Γ1

Γ2

Γ3

Γ4 Γ5

FIG. 2 – Schematic representation of the domain for Q = 5.

Let Ω be a bounded polygon of R2, the boundary
of which is denoted by Γ. We suppose that the
domain has Q obstacles, Q ≥ 0. Let Γ0 denote
the exterior boundary of Ω and let Γq with
q ∈ [1, Q] be the interior polygonal boundary of
Ω, so that Γ = Γ0 ∪q∈[1,Q] Γq.

The solution ψ satisfies (to simplify the notation
the · is omitted){

−∆ψ = ω, Ω
ψ = aq, Γq, q ∈ [0, Q]

(4)

The non-penetration condition for the fluid at a boundary Γ imposes that u ·n = 0, with n a normalized
vector normal to the boundary Γ. This leads to ∇ψ · n⊥ = 0. Then, ψ must have a constant value on
each piece of boundary Γq, which is generally set at the arbitrary value of zero. However, assuming
that different pieces of boundary have the same value for ψ is a restriction on the ensemble of available
values for the control parameters. Since several pieces of boundary are here considered in the problem
definition (4), we only impose a0 = 0.

The averaging operator 〈·〉 on Ω is defined as

〈X〉 =

∫
Ω
X dr∫

Ω
1 dr

, (5)

allowing the domain to have an area
∫

Ω
1 dr 6= 1.

∫
Ω

1 dr = |Ω| in the following.

We introduce the enstrophy, the circulation and the energy defined as functions of the variable ψ as

S[ψ] =
1
2
〈∆ψ∆ψ〉 , C[ψ] = 〈∆ψ〉 =

∫
Γ
∇ψ · ndσ
|Ω| , E[ψ] =

1
2
〈∇ψ∇ψ〉 . (6)

The total circulation can be developed as C =
Q∑
q=0

Cq =
Q∑
q=0

∮
Γq

∇ψ · ndσ.

Following Naso [8], the most probable solution in the sense of the Minimum-Enstrophy-Principle
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(MEP) is the solution of the variational problem :

min
ψ

{
S[ψ]|E[ψ] = E, C[ψ] = C, Cq[ψ] = Cq, q = 1, . . . , Q

}
, (7)

Remark that no condition is imposed on Γ0 since C = C0 +
Q∑
q=1

Cq.

To minimize enstrophy under the constraints of conserved energy E and circulation C and Cq (q =
1, . . . , Q), we introduce the Lagrange parameters β, α and αq (q = 1, . . . , Q) and the functional

J(ψ) = S(ψ)− β
(

1
2
〈∇ψ · ∇ψ〉 − E

)
− α (〈∆ψ〉 − C)

−
Q∑
q=1

αq


∮

Γq

∇ψ · ndσ

|Ω| − Cq

 (8)

In order to write the variational form for the optimization problem J we compute (with φ|Γ = 0)

J(ψ + θφ) = J(ψ)− θ 〈∆ψ∆φ〉 − 1
2
θ2 〈∆φ∆φ〉

−βθ 〈∇ψ · ∇φ〉 − 1
2
βθ2 〈∇φ · ∇φ〉

+αθ 〈∆φ〉 − θ
Q∑
q=1

αq

∮
Γq

∇φ · ndσ

|Ω| .

(9)

By imposing the constraint∇φ · n = 0 on Γ we get the local problem satisfied by the solution ψ of the
optimization problem

∆ψ = βψ + α = −ω. (10)

Taking the space integral of (10) :∫
Ω

∆ψdr− β
∫
Ω

ψdr = α

∫
Ω

1dr, (11)

which considering the expression defined for the averaging operator leads to

α = 〈∆ψ〉 − β 〈ψ〉 = C − β 〈ψ〉 . (12)

Replacing α by its expression in (10) leads to the fundamental equation to be solved

−∆ψ + βψ = C + β 〈ψ〉 . (13)

3 Case of a domain with no obstacle (Q = 0)
Equation (13) is first solved in the simple case of homogeneous Dirichlet boundary conditions, as
presented in [4] and [8]. This preliminary step will enable us to validate the numerical solver.
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3.1 Resolution method
The fundamental equation to be solved here is

−∆ψ + βψ = C + β 〈ψ〉 (14)

with ψ = 0 on the boundary. Expression for the kinetic energy can be obtained using (6) and (13) :

E =
1
2
〈∇ψ∇ψ〉 = −1

2
〈ψ∆ψ〉 = −1

2
β
(〈ψ2〉 − 〈ψ〉2)+

1
2
C〈ψ〉. (15)

Decomposition of the Laplacian in an eigenbasis
Assuming in a first step that α = 0 ⇔ C = −β 〈ψ〉, equation (14) becomes

−∆ψ + βψ = 0. (16)

Equation (16) is a Laplacian problem ; let (βi, ei)i=1..N be an orthonormal eigenbasis of the Laplacian
operator, with the eigenvectors (ei)i=1..N verifying

〈ei · ej〉 = δij , ei|Γ = 0. (17)

with δij the Kronecker symbol. Solutions of (16) exist when β is an eigenvalue βi. The solutions
ψ = ψEei then are the eigenvectors ei respectively associated with these eigenvalues normalized by a
constant ψE . The normalization constant is obtained by injectingψ into (15) knowing that C+β 〈ψ〉 = 0
by hypothesis :

E = −1
2
βiψ

2
E

〈
e2
i

〉
=⇒ ψE =

√
−2E
βi
. (18)

Injecting (18) into C2 = β2
i 〈ψ〉2 gives

C2 = −2Eβi 〈ei〉2 . (19)

Following [4], the parameters E and C are combined into the control parameter Λ2 defined as

Λ2 =
C2

2E
, (20)

which allows for a simpler representation of the bifurcations presented thereafter.

The Λ parameter can immediately be used to group the parameters (E, C) in (19) into

Λ2 = −βi 〈ei〉2 . (21)

In the case of zero-mean eigenvectors, 〈ei〉 = 0 =⇒ Λ = 0. Several such eigenvectors in the case of
the empty bounded square domain are plotted on figure 3 and 4, on the line corresponding to Λ = 0.

The continuous branch
The case α = C + β〈ψ〉 6= 0 is thereafter considered ; let φ be defined as

φ =
ψ

C + β〈ψ〉 , (22)
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which allows to modify equation(14) into the differential equation

−∆φ+ βφ = 1 (23)

with φ = 0 on the boundary. Assuming that β 6= βi, the orthonormal eigenbasis (ei)i=1..N is used to
decompose φ as

φ =
∑
i

〈ei〉
β − βi ei. (24)

Taking the average of equation (22) : 〈ψ〉 = C〈φ〉/(1− β〈φ〉, we can express ψ as a function of φ as :

ψ =
Cφ

1− β〈φ〉 . (25)

Replacing (25) into (15) to take into account the energy constraint, the "equation of state" Λ = f(β) is
obtained :

(1− β〈φ〉)2 = Λ2(〈φ〉 − β〈φ2〉). (26)

The eigenbasis (ei)i=1..N and the set of eigenvalues (βi)i=1..N being set by the geometry, fixing an
arbitrary value for β allows the calculation of Λ with (26). A "continuous solution" ψcont associated to
Λ2
cont can therefore be calculated for each value of β. The Λ2

cont = f(β) plot then available is refered
to as the "continuous branch".

For eigenvectors such as 〈ei〉 6= 0, let us consider the case of β → βi :

φ ∼
β→βi

〈ei〉
β − βi ei =⇒ Λ2 →

β→βi

−βi 〈ei〉2 (27)

The value of Λ obtained for the eigenvectors of non-zero mean value in (21) is recovered in the "conti-
nuous" branch, i.e. the pure eigenvector solutions of non-zero mean value are contained in the "conti-
nuous" branch.

The mixed solutions
More solutions of the fundamental equation (14) can be obtained by combining a zero-mean eigen-

vector ei with the continuous solution for β = βi, creating "mixed solutions". They are defined as

φmix(βi) = φcont(βi) + χiei =
∑
j 6=i

〈ej〉
βi − βj ej + χiei, (28)

with i such that 〈ei〉 = 0 and χi ∈ R. This leads through (25) to

ψmix(βi) =
Cφmix(βi)

1− βi 〈φmix(βi)〉 =
Cφmix(βi)

1− βi 〈φcont(βi)〉 = ψcont(βi) +
Cχiei

1− βi 〈φcont(βi)〉 . (29)

Solutions ψmix(βi) verify equation (13) since ψcont(βi) is already a solution, the fundamental equation
is linear, and 〈ei〉 is a zero-mean eigenvector.

The mixed solutions include the continuous branch for β = βi as a limit case for χi = 0 ; it is there
straightforward that ψmix(βi) =

χi=0
ψcont(βi) and Λmix(βi) =

χi=0
Λcont(βi). The zero-mean eigenvector
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ei is recovered in the limit case χi →∞, as φmix ∼
χi→∞

χiei and Λmix →
χi→∞

0.

For Λmix(βi) 6= 0, < Λcont(βi), the value of χi is obtained by using the energy constraint through the
injection of (28) into (15).

These "mixed solutions" thus form a continuous transition between
– the zero-mean eigenvectors verifying 〈ei〉 = 0 for Λ = 0 when χi →∞.
– the continuous solution for Λmix(βi) = Λcont(βi) when χi = 0
This completes the problem resolution for the case without obstacle.

3.2 Validation of the method without obstacle
The resolution method explained in section 3 is used as a first step in order to recover classical results
in the case of a square domain without any obstacles.

Combining the "continuous branch" and the mixed solutions allows to group all possible solutions ψ
into the phase diagram plot. The phase diagram obtained for an empty square domain is shown on figure
3. It is very similar to the corresponding plot

:::
As

::::::::::
expected,

:::
the

:::::::
results

:::::::::
obtained by Chavanis [4]

:
(shown

on figure 4
:
)
::::
for

::
an

:::::::::
identical

:::::::::
problem

:::
are

::::::::::
recovered.

Λ2

β
?

?

?

?

?

β1
β1
∗

β2

β3

β4

β5

β2
∗

FIG. 3 – Phase diagram obtained for a bounded square box,
with several significant solutions shown.

FIG. 4 – Phase diagram presented by Chavanis [4] for a
bounded square domain.

On both of these plots, the continuous branch is shown with a thick black line, while the zero-mean
eigenvectors appear on the Λ = 0 vertical line (β2, β3, β5). Eigenvectors with a non-zero mean value
are contained in the continuous branch (β1, β4). The mixed solutions are shown as horizontal, dashed
lines between the continuous branch and the Λ2 = 0 vertical line.

Search of the most probable solution
The ensemble of solutions shown in a phase diagram allows to look for the most probable solution ψ

for any given Λ.

It can be shown (see [3],[4]) that the enstrophy is a strictly decreasing function of the Lagrange para-
meter β. Consequently, among the infinite set of available solutions for a given Λ, the most probable
one is this statistical theory is the one corresponding to the greatest value of β.

In the particular case of the empty square domain as shown on figures 3 and 4, the most probable
solution is the continuous one for any given Λ. Indeed the first mixed solution available at β = β2 is
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unreachable by the system even at small values of Λ because β2 < β1
∗ , with β1

∗ the highest β allowing
the continuous solution to reach Λcont = 0.

As shown by [4] and [8], this arrangement of the different solution categories is very dependent on
the geometry ; a rectangular domain induces quite different mechanisms. Indeed, the first zero-mean
eigenvalue β2 is then higher than β1

∗ for a rectangle of aspect ratio τ > 1.12, which creates an interval
of control parameters where the dipole (mixed solution based on the first pair of zero-mean eigenvalues)
is more probable than the monopole (the continuous branch). A bifurcation is then observable between
the two behaviours at a critical point Λ2

bif .

In order to consider geometries more representative of the transverse flow in the AGATE facility, the
following calculations are performed on non-simply connected domains, i.e. with a central obstacle.
It is shown that such geometries induce bifurcations similar to those observed in rectangular domains
between dipole and monopole states.

The case with obstacle (Q > 1) is described in the following section.

4 Complete case : domain with obstacle

4.1 Problem resolution
In that case, we are faced with the resolution of a Laplacian problem with non homogeneous Dirichlet
boundary conditions. A variable transformation is used by introducing a function ψΓ which satisfies{

ψΓ = aq, Γq, q ∈ [0, Q] (30)

A new function Ψ is defined as ψ − ψΓ. Ψ is a solution of the local problem

−∆Ψ + βΨ = ∆ψΓ − βψΓ + C + β (〈Ψ〉+ 〈ψΓ〉) . (31)

As Ψ satisfies the homogeneous Dirichlet boundary conditions, it can be decomposed on the eigenbasis
(βj , ej) of the Laplacian operator, as was done for the previous resolution in the case of homogeneous
Dirichlet boundary conditions.

The solution ψ and its Laplacian ∆ψ are decomposed into :

ψ =
N∑
j=1

bjej + ψΓ, ∆ψ =
N∑
j=1

bjβjej + ∆ψΓ (32)

with ej = 0 on Γ0 and Γq, q ∈ [1, Q] and ψΓ = aq on Γq, q ∈ [1, Q].

Injecting (32) into (13) allows to compute the coefficients bj depending on the circulation C, the La-
grange multiplier β and the constant function ΨR, and to express in the eigenbase (ej)j=1..N the "conti-
nuous" solution ψcont :

ψcont.(C, β, ψΓ) =
N∑
j=1

bj(C, β, ψΓ)ej + ψΓ. (33)

"Mixed" solutions ψmix can also be linearly computed as

ψmix(C, β, ψΓ) = ψcont(C, β, ψΓ) + xei, ∀x ∈ R (34)
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with ei an eigenvector such as 〈ei〉 = 0.

4.2 Results on non-simply connected domain
The resolution described in 4.1 was applied to more complex geometries presenting multiple pieces of
boundary, in particular with a central obstacle in the domain, though still with homogeneous Dirichlet
boundary conditions. The theoretical framework remains broadly the same when an obstacle is present ;
the phase diagram obtained for both an annular domain and a square domain with a central obstacle
are shown

::
in

:
figures 7 and 8. It can be immediately observed in these diagrams that a bifurcation

occurs between 1- and 2-eddies states for a particular value of Λ2
bif , as it was observed in the case of a

rectangular domain. The 1- and 2-eddies states are respectively the continuous and mixed solutions.

These two states observed in the case of the annular domain are coherent with the experimental findings
of

:::::::
findings

::::
can

:::
be

:::::::::::
compared

::
to

::::::
those

:::::::::
obtained

::
in

::::
the

::::::::::::
2D-rotating

:::::
tank

:::::::::::
experiment

:::
by

:
Tian et al. [11],

who encountered in a 2D-rotating tank experiment two large-scale flow configurations, labeled as .

::::::::::
Depending

::::
on

:::
the

::::::::
forcing

:::::::::
(through

:::::
fluid

:::::::::::::
influx/outflux

::::
and

::::::::
rotation

:::
of

::::
the

::::::
tank),

:
a
::::::::::::
bifurcation

::::::::
between

::::
two

::::
flow

:::::::::
patterns

::::
was

:::::::::
exhibited

::::::::
therein,

:::
as

::::::
shown

:::
in

::::::
figure

::
5

:
:
:

–
:
a

:
"zonal" and

:::::
flow

:::::::
pattern

:::::::::
featuring

::
a

:::::::::
dominant

::::::
eddy

:::::::
around

:::
the

:::::::
central

::::::::::
obstacle,

–
:
a

:
"blocked" , as shown in figure 5.

::::
flow

:::::::
pattern

::::::::::
featuring

:
a

:::::::
weaker

:::::::
central

:::::
eddy

:::::
with

::::::
larger

::::::::::::::::
counter-rotating

:::::::
eddies.

FIG. 5 – "Blocked" (a) and "zonal" (b) flow
patterns observed by Tian [11] (Figure 2).

FIG. 6 – "Mixed" (left) and "continuous"
(right) minimal-enstrophy solutions obtained.

A qualitative agreement between
::::
Both

::
in

:
these experiments and our results seems to be achieved, both in

the fact that the 2D turbulent flow can exist in two distinct states, and in the mechanics of these states : a

::
in

::::
our

:::::::
results,

:
a
:::::::
single

:::::
phase

::::::::::
transition

::
is

:::::::::
obtained.

:::::::::::
Qualitative

:::::::::::
similarities

::::
can

::::
also

:::
be

::::::
found

::::::::::::
respectively

::::::::
between

::::
the

::::::
shape

:::
of "zonal" flow comprised of a dominant eddy around the obstacle a

:::::
flows

::::
and

:::
of

:::
the

:::::::::::
continuous

::::::::::
solutions,

::::
and

:::::::::
between

:::
the

:::::::
shape

::
of

:
"blocked" flow with diminished importance of the

main eddy but more significant secondary eddies on each side of the obstacle.
:::::
flows

::::
and

:::
of

::::
the

::::::
mixed

:::::::::
solutions.

::::::::::
Although

::::
this

::::::::::::
comparison

::
is

:::::::
drawn

:::
for

::::::::
precise

::::::
values

:::
of

::::
the

::::::::
external

::::::::::::
parameters,

::
it

:::::
gives

:::
us

::::::::::
confidence

:::
in

:::
the

::::::::
method

:::::
used

:::
for

::::::::::::
non-simply

::::::::::
connected

::::::::::
domains.
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FIG. 7 – Phase diagram showing the "continuous" solution
(thin black line), the "mixed" solutions (dashed horizontal
lines) and the most probable solution (thick black line) in the
cas of an annular domain, for a1 = 0. The Λ2 value corres-
ponding to the bifurcation is denoted as Λ2

bif .
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FIG. 8 – Phase diagram showing the "continuous" solution
(thin black line), the "mixed" solutions (dashed horizontal
lines) and the most probable solution (thick black line) in the
case of a square with a central obstacle, for a1 = 0. The Λ2

value corresponding to the bifurcation is denoted as Λ2
bif .

4.3 Non-homogeneous boundary conditions
These results obtained with aq = 0, q ∈ [1, Q] can be completed by varying aq and computing the
circulation around the central obstacle Cobstacle. This allows to observe the fluctuation of the bifurcation
parameter Λ2

bif . The resulting plot is shown as the bifurcation diagram in figure 9 in the case of an
annular geometry. It is there shown that existence zones for the two states (1-eddy or "zonal, and 2-
eddies or "blocked") were found in the parameter space (Λ2, Cobstacle). The bifurcation line
Cobstacle = f(Λ2) is also shown as a thick black line.

Λ2

Cobstacle

C
'blocked'

'zonal'

FIG. 9 – Bifurcation diagram showing the domination zones of the "mixed" ("blocked") and "continuous" ("zonal") solutions
in parameter space, in the case of the annular domain. It was obtained by scanning E and Cobstacle values while keeping C
constant.
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5 Perspectives/conclusion
In the theoretical framework of statistical fluid mechanics in two-dimensions presented by [8], a nume-
rical approach is designed and implemented to solve the variational problem (7) of minimal-enstrophy
solutions under the constraints of E, C and Cq, q ∈ [1, Q] conservation. The lowest-enstrophy solution
obtained allows to find the most probable flow pattern in both an annular domain and a square domain
with a central obstacle.
Two particular regimes are identified ("mixed" and "continuous"), which are coherent with the "blo-
cked" and "zonal" flows observed in the fast-rotating tank experiment by Tian [11]. The bifurcation
between these regimes occurs for a particular value Λ2

bif , which depends on the geometry and on the
values chosen for the constraints (see Figure 9).
The existence of such multiple meta-stable states and the possibility that bifurcations happen between
them for 2D flows around central obstacles is an important result for the comprehension of the experi-
mental observations from the AGATE facility. Indeed, it seems likely that the behaviour that was here
put into light for simple geometries exists in geometries including more obstacles as well.
Future work will consist in CFD calculations attempting to observe the simulated flow stabilizing onto
the predicted minimal-enstrophy solutions, and extension to

:::::::::::
exploration

::
of

::::::::
several

:
multiple-obstacles

cases
::
in

:
a
::::::::::
parameter

::::::
space

::::::::
limited

::
to

:::::::::::::::::::
physically-relevant

::::::::::::::
configurations.
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