Wrinkling behavior of film/substrate systems analyzed with 2D and 3D finite element models
Pascal Ventura  1@  , Michel Potier-Ferry  2@  , Hajer Rezgui Chaabouni  3@  , Fan Xu  4@  , Arnaud Lejeune  5@  
1 : Laboratoire d'étude des micro-structures et de mécanique des matériaux [Metz]  (LEM3)  -  Site web
CNRS : UMR7239, Université de Lorraine
Ile du Saulcy 57045 Metz - cedex 01 -  France
2 : Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux  (LEM3)
Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (DAMAS), Université de Lorraine, France
Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3), UMR 7239, CNRS/Université de Lorraine, F-57045 Metz, France -  France
3 : Groupe d'Etudes des Matériaux Hétérogènes  (GEMH)
Institut des Procédés Appliqués aux Matériaux, Université de Limoges : EA3178, Ecole Nationale Supérieure de Céramique Industrielle
CENTRE EUROPEEN DE LA CERAMIQUE (CEC) ENSCI 12, rue Atlantis F-87068 LIMOGES CEDEX -  France
4 : Institute of Mechanics and Computational Engineering, Dept. of Aeronautics and Astronautics
Fudan University, Shanghai -  Chine
5 : Département de Mécanique Appliquée R. Chaléat  (FEMTO-ST/LMARC)
CNRS : UMR6174, Université de Technologie de Belfort-Montbeliard, Ecole Nationale Supérieure de Mécanique et des Microtechniques, Université de Franche-Comté
24 chemin de l'Epitaphe - 25000 Besançon -  France

Various models in the literature can predict the instabilities in film/substrate systems, however only a few of them are based on full standard techniques of computational mechanics. For instance, the use of Fourier spectral method permits fairly low cost computations, but imposes periodic boundary conditions.

In this paper, we present the numerical modeling of film/substrate systems using the finite element method, which allows accounting for various geometries, material properties and boundary conditions. Compliant substrates, because of their thickness are efficiently modeled with 2D/3D finite elements. However, thin shell elements are often more suitable for the film (Fan Xu[1]), but, in the case of short instability wavelength, 2D/3D finite elements are necessary.

It is often needed to simulate many wrinkles and the 2D/3D finite element method leads to large-scale problems. Therefore, it is important to use High Performance Computing capabilities. Much effort has been done to efficiently improve CPU time with MPI programming. Several examples will be presented, as well as the study of the performance of the parallel 2D/3D finite element program.

[1] Fan Xu, “Numerical study of instability pattern of film/substrate systems”, PhD thesis, Université de Lorraine, Dec. 2014.


Personnes connectées : 3