A Gurson-type ``layer model" for ductile porous solids with isotropic and kinematic hardening
Léo Morin  1, *@  , Jean-Claude Michel  2@  , Jean-Baptiste Leblond  3@  
1 : Procedes et Ingenierie en Mécanique et Matériaux [Paris]  (PIMM)  -  Site web
Arts et Métiers ParisTech, Conservatoire National des Arts et Métiers (CNAM), CNRS : UMR8006, Conservatoire National des Arts et Métiers [CNAM]
151 boulevard de l'hôpital, 75013 Paris -  France
2 : Laboratoire de Mécanique et d'Acoustique  (LMA)  -  Site web
Ecole Centrale de Marseille, Université de la Méditerranée - Aix-Marseille II, Université de Provence - Aix-Marseille I, CNRS : UPR7051
3 : Institut Jean Le Rond d'Alembert  (IJLRA)  -  Site web
CNRS : UMR7190, Université Pierre et Marie Curie (UPMC) - Paris VI
Boite 162 4 place Jussieu 75005 Paris -  France
* : Auteur correspondant

The aim of this work is to propose a Gurson-type model for ductile porous solids exhibiting isotropic and kinematic hardening. The derivation is based on a ``sequential limit-analysis" of a hollow sphere made of a rigid-hardenable material. The heterogeneity of hardening is accounted for by discretizing the cell into a finite number of spherical layers in which the quantities characterizing hardening are considered as homogeneous. The model is assessed through comparison of its predictions with the results of some micromechanical finite element simulations of the same cell. The numerical and theoretical overall yield loci are compared for given distributions of isotropic and kinematic pre-hardening. A very good agreement between model predictions and numerical results is found in both cases.


Personnes connectées : 1